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3.1 Topological Spaces: Fundamentals

Theorem 3.1. Let {Ui}ni=1 be a finite collection of open sets in a topological space (X,T).
Then ∩ni=1Ui is open.

Proof: We’ll do this with mathematical induction. Let the base case be n = 1. Then
observe that

1⋂
i=1

Ui = Ui

which is open by hypothesis.

Now we perform the inductive step. Suppose the statement holds for the integer n ≥ 1.
Let V be any open set. Then (

n⋂
i=1

Ui

)
∩ V

is the intersection of two open sets, (by hypothesis, both
n⋂
i=1

Ui and V ) are open, and so by
condition (3) of a topology the intersection of n+ 1 open sets is open. As the statement
holds for n+ 1, we have by mathematical induction that it holds for all n ∈N.

�

Exercise 3.2 Why does your proof not prove the false statement that the infinite inter-
section of open sets is necessarily open?

Solution: The answer to this lies in the fact that a proposition which is proven to be true by
mathematical induction does not imply that the proposition is true for an infinite number of
steps. Thus the proof does not prove the false statement that infinite intersections are open.

�

Theorem 3.3 A set U is open in a topological space (X,T) if and only if for every point
x ∈ U , there exists an open set Ux such that x ∈ Ux ⊂ U .
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Proof: We’ll prove one direction at a time. Suppose that we have a set U such that, for
every x ∈ U , there exists an open set Ux such that x ∈ Ux ⊂ U . Now suppose we take the
(possibly uncountable) union of each of these open sets Ux. Observe that, since for each x
we have Ux ⊂ U , ⋃

x∈U
Ux = U .

However by condition (4) in the definition of a topology, we know that this ought to be inside
our topology T, which proves that U must be an open set.

Now we prove the other direction. Consider an arbitrary point x ∈ U , where U is an
open set in our topology T. Let V be any neighborhood about x. Observe that U ∩ V is an
open set such that x ∈ Ux ⊂ U . Thus we have found our open neighborhood Ux, proving the
other direction of the theorem. Thus the theorem itself is true.

�

Exercise 3.4 Verify that Tstd is a topology on Rn; in other words, it satisfies the four
conditions of the definition of a topology.

Solution:

1. Observe that the first condition is satisfied, namely that ∅ ∈ Tstd. This is because
the condition to be in Tstd is vacuously true for the empty set because there are no
elements in the empty set.

2. Now consider the set Rn itself. For any point p ∈ Rn, B(p, ε) ⊂ Rn for any ε > 0.
Thus by the definition of Tstd, we have that Rn ∈ Tstd. Condition two is satisfied.

3. Now consider two elements U ,V ∈ Tstd. Suppose that U ∩ V 6= ∅; otherwise it is
trivial. So consider an element p ∈ U ∩ V . Then there exists two balls B(p, ε1) ⊂ U

and B(p, ε2) ⊂ V where ε1, ε2 > 0. On this subset, observe that B(p,min{ε1, ε2}) ⊂
U ∩ V . First note that we can certainly conclude that B(p, ε1) ∩ B(p, ε2) ⊂ U ∩ V .
Now because B(p, ε1) and B(p, ε2) are balls about the same point, we know that
B(p, ε1) ∩B(p, ε2) = B(p,min{ε1, ε2}), so that we may conclude U ∩ V ∈ Tstd. Thus
condition three is satisfied.
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4. Finally, we’ll verify the fourth condition. Consider {Uα}α∈λ where λ is an arbitrary
index set such that Uα ∈ Tstd. Thus for each α ∈ λ, and for every point p ∈ Uα, there
exists an open ball B(p, ε(α,p)) ⊂ Uα such that ε(α,p) > 0. Next, suppose p ∈ ⋃

α∈λ
Uα.

Then p ∈ Uα for at least one α ∈ λ, so that B(p, ε(α, p)) ⊂ Uα. Since p was arbitrary
in ⋃

α∈λ
Uα, we have that ⋃

α∈λ
Uα ∈ Tstd as desired.

�

3.5 Verify that the discrete, indiscrete, finite complement and countable complement topolo-
gies are indeed topologies on any set X.

Solution: We can verify that the finite complement topology T on a set X is a true topology
on X as follows.

1. First observe that in the definition of the topology ∅ is said to be in the topology so
the first condition of a topology is satisfied.

2. Next we can verify the second property of topologies. It is obvious that X ∈ T. This
is because X −X = ∅ which is itself a finite set.

3. Now if U ,V ∈ T, then X − U and X − V are both finite sets. Therefore, we can
conclude that (X − U) ∪ (X − V ) is a finite set. However, by De Morgan’s laws,
(X −U)∪ (X − V ) = X − (U ∩ V ), and because this is a finite set, we must conclude
that U ∩ V ∈ T. Thus the third property of a topology is verified.

4. Finally, we verify the last property in the defintion of a topology. Suppose Uβ ∈ T for
all β ∈ λ. Now observe that for some β ∈ λ, X − Uβ is a finite set. But observe that
X −∪α∈λUα ⊂ X − Uβ, so that X −∪α∈λUα must also be a finite set. Thus we see
that ∪α∈λUα ∈ T, proving the last property which verifies that T is a true topology on
X.

�

Page 3



Math 147 Topology Section 3 Spring 2019

Exercise 3.7 Give an example of a topological space and a collection of open sets in that
topological space that show that infinite intersections of open sets need not be open

Solution: We can borrow the example I provided in Exercise 3.2. Consider the standard

topology on R and observe that
∞⋂
n=1

(
− 1
n

, 1
n

)
= {0}. {0} isn’t an open set under the

standard topology, so that this example shows that countable intersections of open sets may
not be open.

�

Exercise 3.8 Let X = R and A = (1, 2). Verify that 0 is a limit point A in the indiscrete
topology and the finite complement topology, but not in the standard topology nor the dis-
crete topology of R.

Solution: In the indiscrete topology, the only possible set that can contain 0 is simply R

itself, for which R∩ (1, 2) 6= ∅. Thus 0 must be a limit point of (1, 2).

In the finite complement topology on R, the open sets which contain 0 must be sets U such
that R−U is finite and 0 ∈ U . Now since R−U must be finite while (1,2) is obviously un-
countable, it will never be the case that (1, 2) ⊂ (R−U). Therefore, (U −{0})∩ (1, 2)) 6= ∅
for all U in the finite complement topology. Thus 0 must be a limit point of (1, 2) in this
toplogy.

Now 0 is obviously not a limit point of (1,2) in the standard topology. This can be demon-
strated by simply constructing a ball such as B(0, 1/2) (a ball about 0 of radius 1/2) to
show the existence of one open set U about 0 such that U ∩A = ∅. Hence, 0 is not a limit
point of (1,2).

0 is also not a limit point of (1,2) in the discrete topology. For example, consider the
open set {0} which contains 0 but obviously {0} ∩ (1, 2) = ∅. Again, by theorem 3.9, we can
see that 0 is not a limit point of (1,2) in this topology.

�

Theorem 3.9 Suppose p /∈ A in a topological space (X,T). Then p is not a limit point
of A if and only if there exists a neighborhood U of p such that U ∩A = ∅.
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Proof: First suppose that there exists a exists a neighborhood U of p such that U ∩A = ∅.
Then by definition, this cannot be a limit point, since the requirement to be a limit point is
that every neighborhood of p must contain a point q 6= p where q ∈ A. Clearly we we see
that this condition cannot be satisfied, so p cannot be a limit point.

We can prove the other direction by supposing now that p is not a limit point of U . Since
p is not a limit point, we know by definition that there exists at least one neighborhood U
of p such that (U − {p}) ∩A = ∅. Since we are given that p /∈ A, we can further state that
U ∩ A = ∅. Thus we have found our set U of p such that U ∩ A = ∅, which proves the
theorem.

�

Exercise 3.10 If p is an isolated point of a set A in a topological space X, then there
exists an open set U such that U ∩A = {p}.

Solution: Since p is an isolated point, we know that p is not a limit point of A. By definition
of a limit point, this means that there exists at least one open set U containing p such that
(U −{p})∩A = ∅. Since p ∈ A and p ∈ U , we can then state that U ∩A = {p}, as desired.
Thus such a U described in the problem statement exists.

�

Exercise 3.11 Give examples of sets A in various topological spaces (X,T) with
1. A limit point of A that is an element A;
2. A limit point of A that is not an element of A;
3. An isolated point of A;
4. A point not in A that is not a limit point of A;

Solution:

1. Consider the standard topology Tstd on R. For any interval (a, b) ⊂ R where a < b

we have that any point x ∈ (a, b) is a limit point since, for any neighborhood U about
x, (U − {x}) ∩ (a, b) 6= ∅. since for any neighborhood of x there exists a ball B(x, ε)
such that B(x, ε) ⊂ U .
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2. For any interval (a, b) as defined in (1.), we have that a and b are both limit points of
the interval. This is because any open set about these two points will always include
other points in (a, b). For example, if we construct a ball B(a, ε) (a neighborhood
about a with radius ε) then any point in the interval (a, a+ ε) ⊂ (a, b) can be found
within the ball, so that B(p, ε) ∩ (a, b) 6= ∅. This analogously holds for b, so for any
open set U about a or b, we have that (U −{a})∩ (a, b) 6= ∅ or (U −{b})∩ (a, b) 6= ∅,
so that a, b are both limit points of (a, b).

3. Let x ∈ R such that x /∈ (a, b), and observe that x is an isolated point of the set
{x} ∪ (a, b). In this example, x is quite literally an isolated point!

4. Any point x /∈ (a, b) is a point that is not in (a, b) and is not a limit point of (a, b).

�

Theorem 3.13 For any topological space (X,T) and A ⊂ X, A is closed. That is, for
any set A in a topological space, A = A,

Proof: To prove this, let p be a limit point of A. Then for every open set U which contains
p, we know that

(U − {p}) ∩A 6= ∅.

Thus for each U there exists a point q ∈ A such that q ∈ U and q 6= p.
If q ∈ A, then we see that

(U − {p}) ∩A 6= ∅.

If q is a limit point of A, then every open set containing q must intersect with A. Since
U − {p} is an open set containing q, we can also conclude that the set U − {p} must itself
intersect with A. Either way, we have shown that for every open set U which contains p,
(U −{p}) ∩A 6= ∅. In other words, if p is a limit point of A then p ∈ A, so A ⊂ A. Since it
is trivial that A ⊂ A, we must have that A = A as desired.

�

Theorem 3.14 Let (X,T) be a topological space. Then the set A is closed if and only if
X −A is open.
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Proof: First we begin with the forward direction by supposing A is a closed set. Then A
must contain all of its limit points, so X −A contains no limit points of A.
By Theorem 3.9, we can conclude that for all p ∈ X −A, there exists an open set U about p
such that U ∩A = ∅ =⇒ p ∈ U ⊂ X −A. Since this holds for all p ∈ X −A, by Theorem
3.3 this means that X −A is an open set, which is what we set out to show.

Now we prove the other direction, and suppose that X −A is an open set. Since X −A is
open, we know that for every point q ∈ X −A, there exists an open set U of q such that
U ⊂ X −A and therefore U ∩A = ∅. Thus we see that none of the q ∈ X −A could possibly
be a limit point of A since every point of X −A violates the definition of a limit point of
A. Thus all the limit points of A must be in A, so that A is closed. With both directions
proven, the theorem is itself proved.

�

Theorem 3.15 Let (X,T) be a topological space, and let U be an open set and A be a
closed subset of X. Then the set U −A is open and A−U is closed.

Proof: We can show that U − A is open as follows. Since A is closed, we know that
X −A must be an open set by Theorem 3.14. Now U −A = U ∩ (X −A), so U −A is the
intersection of two open sets and hence is itself an open set, which is what we set out to show.

Next, observe that A− U = A ∩ (X − U). Thus A− U is the intersection of two closed
sets, which implies that A−U is itself closed, as desired.

�

Theorem 3.16 Let (X,T) be a topological space. Then:
i) ∅ is closed.
ii) X is closed.
iii) The union of finitely many closed sets is closed.
iv) Let {Aα}α∈λ be a collection of closed subsets in (X,T). Then ∩α∈λAα is closed.

Proof: We can first prove (i) by observing that, since the empty set contains no elements,
it is vacuousely true that it contains all of its limit points. Thus ∅ is a closed set.
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Figure 1: Two arbitrary sets U and A are drawn as well as the sets A−U and U −A.

To prove (ii), observe that X, the entire space, must contain all of its limit points. Thus X
is a closed set.

For (iii), let p be a limit point of
n⋃
i=1

Ai. Then for at least for every neighborhood U of

p we have that (U − {p}) ∩
n⋃
i=1

Ai 6= ∅ so that (U − {p}) ∩Ai 6= ∅ for at least one Ai in of

{Ai}ni=1. Thus all the limit points of
n⋃
i=1

Ai are simply limit points of the sets in {Ai}ni=1.

Thus
n⋃
i=1

Ai contains all of its limit points so it is a closed set.

demorgans laws

To prove (iv), consider an arbitrary collection of closed sets {Aα}α∈λ, where λ is an ar-
bitrary index. Observe that by DeMorgan’s Laws ⋂

α∈λ
Aα

c = ⋃
α∈λ

Acα.

Observe that each Acα is an open set by Theorem 3.14, and because the arbitrary union of

open sets is open, we can then conclude that ⋃
α∈λ

Acα is an open set. Since
( ⋂
α∈λ

Aα

)c
=
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⋃
α∈λ

Acα, Theorem 3.14 tell us that ⋂
α∈λ

Aα is a closed set, as desired.

�

Exercise 3.17 Give an example to show that the union of infinitely many closed sets in a
topological space may be a set that is not closed.

Solution: On the standard topology of R, we can take the example that ∪∞n=1[−n,n]. The
resulting set is no longer a closed set, since for every point in the resulting set we can construct
a neighborhood about every point such that the neighborhood is entirely contained in the
set.

�

Exercise 3.18 Give examples of topological spaces and sets in them that:
1. are closed, but not open;
2. are open, but not closed;
3. are both open and closed;
4. are neither open nor closed.

Solution:

1. In the standard topology on R, closed sets are definitely not open sets.

2. Again, in the standard topology, open sets are not the same thing as closed sets. We
can also use the example of the discrete topology, since every subset is considered to
be an open set. None of the sets are closed.

3. In the indiscrete topology, every set is both open and closed since each set simultane-
ously contains all of its limit points and every point in each set can be contained in a
ball which is a subset of the respective set.

4. Consider the finite complement topology on R. The set Z is not open or closed in this
topology.

�
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Exercise 3.19 State whether each of the following sets are open, closed, both, or niether.
1. In Z with the finite complement topology: {0, 1, 2}, {prime numbers}, {n : |n| ≥ 10}
2. In R with the standard topology: (0,1), (0,1], [0,1], {0, 1}, { 1

n : n ∈N}.
3. In R2 with the standard topology: {(x, y) : x2 + y2 = 1}, {(x, y) : x2 + y2 > 1}, {(x, y) :

x2 + y2 ≥ 1}.

Solution:

1. The set {0, 1, 2} is not an open set. Furthermore, it cannot be a closed set since it
has no limit points (or does this vacuousely prove that it is a closed set?). The prime
numbers are also not an open set. The set {n : |n| ≥ 10} is definitely an open set since
Z− {n : |n| ≥ 10} = {−9,−8, . . . , 8, 9}

2. (0,1) is an open set in this topology since every point x ∈ (0, 1) can be contained in a
neighborhood which is a subset of (0, 1).

(0, 1] is neither an open or closed since, since it doesn’t contain all of its limit points
and not every point can be in a neighborhood entirely contained in the set.

[0, 1] is a closed set since it contains all of its limit points.
{0, 1} is not an open set because not every neighborhood containing either 0 or 1 will
be entirely contained in the set. It is also not a closed set since it doesn’t have any
limit points (or does this imply that it can be a closed set?).

Finally, { 1
n : n ∈ N} is not a closed set because it doesn’t contain its one limit

point, 0. It is also not an open set because not every neighborhood of every point of
the set can be entirely contained in the set.

3. The set {(x, y) : x2 + y2 = 1} cannot be open since not every open set about an
element of the set will be entirely contained in the set. It is however open because it
contains all of its limit points.

The set {(x, y) : x2 + y2 > 1} is open because every point can be contained by an
open set which is in turn contained in the entire set. It is not closed because it does
not contain its limit points.
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Finally, the set {(x, y) : x2 + y2 ≥ 1} is closed because it contains all of its limit
points which lie on the circle.

�

Theorem 3.20 For any set A in a topological space X, the closure of A equals the
intersection of all closed sets containing A, that is,

A =
⋂

A⊂B,B∈C
B

where C is the collection of all closed sets in X.

Proof: Observe that A is a closed set which contains A so that A ∈ B. Thus we’ll have
that ⋂

A⊂B,B∈C
B ⊂ A. Next observe that for all B ∈ C, A ⊂ B. This is because A is the

smallest closed set which contains A. We can argue this by noting that if we delete any
point from A, we’d either delete a point of A and we’d no longer contain A, or we’d delete
a limit point of A and our set would no longer be closed. Hence A is the smallest closed set
containing A.

Since A ⊂ B for all B ∈ C, we can then state that A ⊂ ⋂
A⊂B,B∈C

B. Since we already

showed that ∩A⊂B,B∈CB ⊂ A, this becomes sufficient to prove that A =
⋂

A⊂B,B∈C
B.

�

Exercise 3.21 Pick several different subsets of R and find their closures in:

1. the discrete topology;

2. the indiscrete topology;

3. the finite complement topology;

4. the standard topology.

Solution:
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1. Consider the (0, 1). Then in the discrete topology, we know that the closure is just the
set itself, because every set in the discrete topology is closed.

2. In the indiscrete topology. the closure of the set is all of R, since every point of R is
a limit point of (0, 1).

3. In this case, every point of R is also a limit point to the finite complement topology,
since every open set will always contain points in (0, 1) because it is uncountably
infinite.

4. In the standard topology, [0, 1] would be the closure of the set since 0, 1 are the limit
points of the set.

�

Theorem 3.22. Let A and B be subsets of a topological space X. Then

1. A ⊂ B implies A ⊂ B

2. A∪B = A∪B.

Proof: Consider a limit point p of A. By definition, for every open set U of p, we have that
(U −{p})∩A 6= ∅. However, since B contains A, we can also state that (U −{p})∩B 6= ∅,
meaining that p must also be a limit point of B. Thus A ⊂ B.

Consider limit points p, q of A,B respectively. Then for all open sets U ,V containing p, q
respectively, we’ll have that (U −{p}) ∩A 6= ∅ and (V −{q}) ∩B 6= ∅. Now it is definitely
true that for these same open sets that (U − {p}) ∩ (A∪B) 6= ∅ and (V − {q}) ∩ (A∪B),
so that both p and q must be limit points of A∪B. Thus A∪B ⊂ A∪B.

Now suppose that r is a limit point of A∪B. Then this means that for every open
set W of r, we have that (W − {r}) ∩ (A ∪B) 6= ∅. Thus either (W − {r}) ∩ A 6= ∅, or
(W − {r}) ∩B 6= ∅ or both. In other words, r is either a limit point of A, B, or both. In
any case, this implies that r ∈ A ∪B, so that what we have is that A∪B ⊂ A ∪B. Since
we already showed that A∪B ⊂ A∪B, this effectively proves that A∪B = A∪B.

�

Page 12



Math 147 Topology Section 3 Spring 2019

Exercise 3.23 Let {Aα}α∈λ be a collection of subsets of a topological space X. Then is
the following statement true? ⋃

α∈λ
Aα =

⋃
α∈λ

Aα

Solution: The statement is false. Consider the sequence of sets An = {[ 1
n , 1] : n ∈ N}.

While
∞⋃
n=1

[ 1
n

, 1
]
= (0, 1] =⇒

∞⋃
n=1

[ 1
n

, 1
]
= [0, 1]

We see that ∞⋃
n=1

[ 1
n

, 1
]
=
∞⋃
n=1

[ 1
n

, 1
]
= (0, 1].

Thus this is a counterexample since obviously (0, 1] 6= [0, 1].

�

Exercise 3.24 In R2 with the standard topology, describe the limit points and closure of
each of the following two sets:
1. S = {(x, sin( 1

x)) : x ∈ (0, 1)}
2. C = {(x, 0) : x ∈ [0, 1]} ∪

∞⋃
n=1
{( 1

n , y) : y ∈ [0, 1]}

Solution: Note: The topologist sine curve can be connected or not connected, depending on
what definition you’re using.
For (1), we can graph the function to see that there is rapid oscillations as x approaches the
origin. The function rapidly changes from −1 to 1, and does so indefinitely as x approaches
0. Thus we can say that {(0, y) : y ∈ [−1, 1]} is the set of limit points, so{(

x, sin
(1
x

))
: x ∈ (0, 1)

}
∪ {(0, y) : y ∈ [−1, 1]}

is the closure of the set.

The topologist comb is connected in both definitions of connectivity.
For the comb, we can see that a series of lines converge to the interval {(0, y) : y ∈ [0, 1]} as
x approaches 0 from the right, this must be the set of limit points. Thus the closure must
be

{(x, 0) : x ∈ [0, 1]} ∪
∞⋃
n=1

{( 1
n

, y
)

: y ∈ [0, 1]
}
∪ {(0, y) : y ∈ [0, 1]}.
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Figure 2: The lefthand drawing is the topologist’s sine curve, while the right hand drawing
is the topologist’s comb.

�

Exercise 3.25 In the standard topology on R, there exists a non-empty open subset C of
the closed unit interval [0, 1] that is closed, contains no non-empty open interval, and where
no point of C is an isolated point.

Solution: The rationals won’t work because rationals aren’t closed, since their limit points
are irrationals.

Consider the Cantor set. Everytime you try to construct an open interval it will even-
tually be able to escape and no longer be contained in the cantor set. It is closed because it
contains an arbitrary intersection of closed sets.

�

Theorem 3.26 Let A be a subset of a topological space X. Then p is an interior point
of A if and only if there exists an open set U with p ∈ U ⊂ A.

Proof: First we start with the forward direction. Suppose that for some p ∈ A, there
exsits an open set U such that p ∈ U ⊂ A. Since U is open and U ⊂ A, by definition we
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have that U ⊂ Int(A), and therefore p ∈ Int(A). Thus p must be an interior poiint.

Now suppose that p is an interior point of A. Then since p ∈ Int(A) =
⋃

U⊂A,U∈T
U , we

know that for at least one U ∈ T, p ∈ U ⊂ A. Thus there exists an open set U containing p
which is a subset of A, which is what we set out to show. With both directions proved, we
have proved the theorem.

�

Exercise 3.27 Show that a set U is open in a topological space X if and only if every
point of U is an interior point of U .

Solution: We’ll first prove the forward direciton. Let U ⊂ X, and suppose every point in U
is an interior point of U . By Theorem 3.26 for all p ∈ U there exists an open set Vp such
that p ∈ Vp ⊂ U . Since every point p ∈ U is contained in an open ball Vp which is a subset
of U , we have that U must be an open set by Theorem 3.3.

Now we prove the other direction. Suppose that U is an open set. Then by Theorem
3.3, for every point p ∈ U , there exists an open ball Vp such that p ∈ Vp ⊂ U . But by
Theorem 3.26, this means that every p ∈ U is an interior point of U , which is what we set
out to show.

�

Theorem 3.28 Let A be a subset of a topological space X. Then Int(A), Bd(A) and
Int(X −A) are disjoint sets whose union equals X.

Proof: First we’ll show that these sets are disjoint. Consider a point p ∈ Int(A). By
theorem 3.26, there exists an open ball U of p such that p ∈ U ⊂ A. Therefore, p /∈ X −A.
This is because p /∈ (X −A), and p is not a limit point of this set because not every open
set of p intersects with X −A. Namely, the open set U ⊂ A which we constructed earlier
contains p but does not intersect X −A. Therefore p /∈ X −A.

This fact helps us in two ways. Since p /∈ X −A, it is definitely true that p /∈ Int(X −A) ⊂
X −A, and that p /∈ Bd(A) since the definition of Bd(A) is A ∩X −A. Thus Int(A) is
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disjoint with Bd(A) and Int(X −A).

Finally we’ll show that Int(X −A) is disjoint with Bd(A). Let q ∈ Int(X −A). By Theorem
3.26 there exists an open set Uq such that q ∈ Uq ⊂ (X −A). Thus q cannot be in A. We
can then conclude that q /∈ Bd(A) because Bd(A) = A ∩X −A, and we just showed that
q /∈ A. Therefore, Int(X −A) is disjoint with Bd(A).

Now for the sake of contradiciton, suppose there exists a point r ∈ X such that r /∈
Int(A) ∪ Bd(A) ∪ Int(X − A). Since r /∈ Int(A) and r /∈ Int(X − A), then by defini-
tion, we know that every open set containing r must intersect A and X − A. But this
would imply that r ∈ Bd(A), which is a contradiction. Thus there is no r ∈ X such that
r /∈ Int(A) ∪Bd(A) ∪ Int(X −A), which means that X = Int(A) ∪Bd(A) ∪ Int(X −A).

�

Exercise 3.29

Exercise 3.29 Pick several different subsets of R, and for each one, finds its interior and
boundary using:

1. the discrete topology;

2. the indiscrete topology;

3. the finite complement topology;

4. the standard topology.

Solution:

1. Consider the set (0, 1). Since this is the discrete topology, we know that every subset
of R is open. Therefore, the interior of (0, 1) is simply itself. The boundary of this set
is simply empty, since (0, 1) ∩R− (0, 1) = ∅.

2. For (0, 1), the interior is ∅, since the empty set is the largest set contained in (0, 1). On
the other hand, the boundary is simply the set {0, 1} since (0, 1)∩R− (0, 1) = {0, 1}.
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3. On the finie complement topology, (0, 1) does not have an interior. This is because on
this topology there does not exist an open set contained in (0, 1). The set is also not
closed, since it does not contain its limit points. In fact, every point in R is a limit
point of the set, so (0, 1) = R and R− (0, 1) = R, so the boundary is simply R.

4. For the standard topology, the interior is simply (0, 1). The boundary is {0, 1}, since
(0, 1) ∩R− (0, 1) = {0, 1}.

�

Theorem 3.30 Let A be a subset of the topological space X and let p be a point in X.
If {xi}i∈N ⊂ A and xi → p, then p is in the closure of A.

Proof: Since xi → p, we know that for every open set U containing p, there exists an
N ∈ N such that xi ∈ U for i > N . However, for all n ∈ N, we know that xn ∈ A.
Therefore, we know that (U − {p}) ∩A 6= ∅ for any open set U containing p. Thus p must
be a limit point of A, so p is in the closure of A.

Figure 3: With the drawing, its easy to see that if all the points in the sequence must be in
A, then the limit of the sequence is at most in the closure of A.

�

Theorem 3.31 In the standard topology on Rn, if p is a limit point of a set A, then there
is a sequence of points in A that converge to p.
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Proof: Since p is a limit point of A, we know that for every open set U containing p, we
have that (U − {p}) ∩A 6= ∅. Thus let ε > 0, and consider the sequence of balls B(p, ε/n)
containing p of radius ε/n. Then since (B(p, ε/n)− {p}) ∩ U 6= ∅, for each n there must
exist a q ∈ A such that q ∈ (B(p, ε/n)− {p}). Label these such q as qn.

Now let δ > 0, and consider the open ball B(p, δ). Then there exists an m ∈ N such
that ε/m < δ so that B(p, ε/m) ⊂ B(p, δ). In other words, for any open set U about p,
there exists a number m ∈ N such that for all n > m, qn ∈ U . Therefore we can conclude
that {qn} is a sequence of points where for all n ∈N, qn ∈ A and qn → p, which is what we
set out to show.

In general, the limit point of a set is not the same thing as the limit of a sequence.

�

Exercise 3.32 Find an example of a topological space and a convergent sequence in that
space, where the limit of the sequence is not unique.

Solution: An easy example can be found with the indiscrete topology on R. Consider the
sequence 1, 2, 3, . . . . Then every x ∈ R is a limit of the sequence, since the only open set
containing any point is R which obviously contains every point of the sequence.

�

Exercise 3.33 1. Consider sequences in R with the finite complement topology. Which
sequences converge? To what value(s) do they converge?
2. Consider sequences in R with the countable complement topology. Which sequences
converge? To what value(s) do they converge?

Solution: Consider the sequence
{ 1
n
|n ∈ R

}
and

{
n

n+ 1 |n ∈N

}
. Then on the finite com-

plement topology, we see that both sequences are convergent. This is because, for either of
the sequences, we cannot construct an open set around a limit point which does not include
points of the sequence, since every open set is of the form R−X, where X is a finite set,
and both sequences are countably infinite. In addition, the convergence of both sets is not
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unique, since on this topology, every open set of any x ∈ R will inevitably include points of
the sequences.

In both cases, neither of the sequences are convergent. This is because for any x ∈ R

which could be a limit point of the sequence, we can construct an open set U containing x
where U = R−

{ 1
n
|n ∈ R

}
. Thus by the definition of a limit of a sequence, neither of these

points converge.
Note: what is the relationship between the sequences which are and aren’t convergent on
these two different topological spaces? It seems like a finite sequence wouldn’t be convergent
on the finite complement topology, while a infinite one is, and that an infinite sequence isn’t
convergent on the countable complement topology, while a finite one is.

�
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Chapter 4

Bases, Subspaces, Prodcuts: Creating New Spaces

Theorem 4.1 Let (X,T) be a topological space and B be a collection of subsets of
X. Then B is a basis for T if and only if:
1. B ⊂ T

2. for each set U in T and point p in U there is a set V in B such that p ∈ V ⊂ U

Proof: First we prove the forward direction. Suppose we have a set B such that B ⊂ T,
and for every open set U ∈ T and point p in U there is a set V in B such that p ∈ V ⊂ U .
Then let A be an open set of X. For all a ∈ A, there exists an open set Va ∈ B such that
a ∈ Va ⊂ A. Then observe that ⋃

a∈A
Va = A.

Thus we see that every open set in X is the union of elements of B, so B is a basis for
X.

Now we prove the other direction, and suppose B is a basis for X. First observe that
B ⊂ T because this is part of the definition of a basis, so this proves (1). Now let U ∈ T.
Then ⋃

B∈B′
B = U

for some subset B′ of B. Thus for any p ∈ U , there must exist at least one B ∈ B′ such
that p ∈ B and by construction B ⊂ U . Therefore, we have that for each set U in T and
point p in U there is a set B in B such that p ∈ B ⊂ U , as desired.

�

Ex: the set of length 1 intervals. This does not generate a topology on R because
intersections should be open but sometimes they are intervals of length less than 1.
Another topology is the stick bubble topology. Open sets are balls sitting in the upper
half plane or an open ball containing a single point on its circumference which is shared
with the boundary of the upper half plane.

Ordered set topology:
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Exercise 4.2
1. Let B1 = {(a, b) ⊂ R : a, b ∈ Q}. Show that B1 is a basis for the standard topology
on R.
2. Let B2 = {(a, b) ∪ (c, d) ⊂ R : a < b < c < d are distinct irrational numbers.} Show
that B2 is also a basis for the standard topology on R.

Solution: 1. We can do this using Theorem 4.1. Observe firstly that B1 ⊂ Tstd. Now
consider an arbitrary open set U in R. By definition, for any p ∈ U there exists an open
ball B(p, ε(p)) such that p ∈ B(p, ε(p)) ⊂ U . Since the rationals are dense in R, for any
p ∈ U there must exist a rationals a/b and c/d such that

p− ε(p) < a/b < p < c/d < p+ ε(p).

Thus (a/b, c/d) ∈ B1 and p ∈ (a/b, c/d) ⊂ B(p, ε) ⊂ U . This proves (2) of the theorem,
so B1 is a basis for the standard topology on R.

2. We can do this using Theorem 4.1. Observe firstly that B1 ⊂ Tstd. Now consider
an arbitrary open set U in R. By definition, for any p ∈ U there exists an open ball
B(p, ε(p)) such that p ∈ B(p, ε(p)) ⊂ U . Since the irrationals are dense in R, for any
p ∈ U there must exist a rationals a, b, c and d such that

p− ε(p) < a < p < b < c < d < p+ ε(p).

Thus (a, b) ∪ (c, d) ∈ B2 and p ∈ (a, b) ∪ (c, d) ⊂ B(p, ε) ⊂ U . This proves (2) of the
theorem, so B2 is a basis for the standard topology on R.

�

Theorem 4.3 Suppose X is a set and B is a collection of subsets of X. Then B is a
basis for some topology on X if and only if:
1. Each point of X is in some element B
2. if U and V are sets in B and p is a point in U ∩ V , there is a set W of B such that
p ∈ W ⊂ (U ∩ V ).

Proof: First we’ll prove the forward direction. Suppose that B is a basis for some
topology T. Since X ∈ T, we know by Theorem 4.1 that for every p ∈ X there exists a
B ∈ B such that

p ∈ B ⊂ X.
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Figure 1: Here we have sketched the conditions (1) and (2), where X is the whole space,
U ,V ∈ B and W ∈ (U ∩ V ).

Thus this proves (1). Next observe that if U ,V ∈ B, then U ,V ∈ T. Therefore, U ∩V ∈ T

is an open set in X. By Theorem 4.1, for any p ∈ U ∩ V , there must exist a W ∈ B sucht
that

p ∈ W ⊂ U ∩ V .

This proves (2) which finishes the proof in this direction.
Suppose that (1) and (2) are true. Then consider the set of all possible unions of

elements of B = {Bα}α∈λ, namely the set

T = {
⋃
α∈λ′

Bα : λ′ ⊂ λ}.

We can now verify the properties that this is a topology.

1. Observe that ∅ ∈ T if we take an empty union of objects.

2. X ∈ T by condition (1).

3. Observe that arbitrary unions of elements of B are within T, since that is by defi-
nition how we constructed T.

4. By condition (2) if U ,V ∈ B then there exsits a W such that W ∈ B and p ∈ W ⊂
(U ∩ V ). Thus observe that

U ∩ V =
⋃

p∈U∩V
Wp
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where Wp ∈ B such that p ∈ Wp ⊂ U ∩V . By our definition of our topology, U ∩V
must be an open set. Therefore, finite interesections of open sets are open.

Thus we have shown that conditions (1) and (2) generate a topology, which completes
the proof.

�

Exercise 4.4 Show that the basis proposed above (all sets of the form [a, b) = {x ∈
R : a ≤ x < b}) for the lower limit topology is in fact a basis.

Solution: We can show that this is a basis by using Theorem 4.3. Observe that for any
point p ∈ R, there exists a, b ∈ R such that a ≤ p < b. Thus every point in R is in some
element of our basis. Next, let c < d < e < f and consider U = [c, d] and V = [e, f ].
Then U ∩ V = ∅ ∈ RLL.
Next, let c < d and e < d < f , and consider the sets U = [c, d) and V = [e, f). Then
there is a point p ∈ (U ∩V ). Observe that if ε < p− e then the set p ∈ [p− ε, f) ⊂ U ∩V
and [p− ε, f) is a member of our basis. Thus we have that sets of the form [a, b) form a
basis for the lower limit topology.

�

Theorem 4.5 Every open set in Rstd is an open set in RLL, but not vice versa.

Proof: Consider an open set B(p, ε) in Rstd about a point p of radius ε > 0, which is
really just an interval (p− ε, p+ ε). Then consider the sequence of open sets RLL:{[

p− ε
(

1− 1
2n
)

, p+ ε
)

: n ∈N

}
.

Recall that an arbitrary union of open sets is open. Then

⋃
n∈N

[
p− ε

(
1− 1

2n
)

, p+ ε
)
= (p− ε, p+ ε)

is an open set. Thus we have that open sets in Rstd are open in RLL. However, it is
obvious that open sets in RLL are not open in Rstd, because sets of the form [a, b) are
neither open or closed in Rstd. Thus this proves the theorem.

�
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Exercise 4.6 Give an example of two topologies on R such that neither is finer than
the other, that is, the two topologies are not comparable.

Solution: We can define an upper limit topology RUL generated by basis sets (a, b] =
{x ∈ R|a < x ≤ b}.

For each x ∈ R ∈ (x− ε,x+ ε] ∈ RUL. In addition, observe that (a, b] ∩ (c, d] = (b, c] if
b < c and (a, d] if b = c and ∅ if b > c, all of which are basic open sets in the topology.
Thus by Theorem 4.3 this generates a topology.

Now observe that neither of the topologies RLL and RUL are finer than the other, since
neither is a subset of the other. Thus these topologies on R are not comparable.

�

Exercise 4.7 Check that the collection of sets that we specify as a basis in the double
headed snake actually forms a basis for the topology.

Solution: We can verify this using theorem 4.3. Observe first that every point in R+00

is contained within some set in the basis. Next, let U and V be any two sets in the
topology. Then if U ,V are of the form (0, b)∪ {0′}, then their intersection will be of the
form (0, a) ∪ {0′} where a ≤ b which is a set within our basis. The argument applies
again to if U ,V are both of the form (0, b) ∪ {0′′} or (a, b).

Next observe that if we intersect U of the form (0, b)∪{0′} with V of the form (a, b) then
the intersection is either empty, or of the form (a, b), which is a type of set contained in
our absis. If we intersct
Let U be any set in R+00. Let U = (a, b) where a, b ∈ R and a < b. If U does not
contain {0′} or {0′′}, then there exits numbers c, d ∈ mathbbR such that a < c < d < b.
Then the set (c, d) is in our basis and is a subset of U .

�

Exercise 4.8 In the Double Headed Snake, show that every point is a closed set; how-
ever, it is impossible to find disjoint open sets U and V such that {0′} ∈ U and {0′′} ∈ V .
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Solution: Observe that the complement of every point is an interval of the line, for which
we can represent as the union of basic open sets and therefore the complement of every
point is open. Thus every point must be a closed set.

Next, let U be an open set containing {0′} and V an open set containing {0′′}. Then
by definition, there must exist basic open sets UB, VB such that 0′ ∈ UB ⊂ U and
0′′ ∈ VB ⊂ V . Since they are basic open sets containing the zeros of the double headed
snake, both are either of the form (0, b) ∪ {0′} or (0, b) ∪ {0′′}, so that UB ∩ VB 6= ∅.
Thus we cannot find disjoint open sets U and V such that {0′} ∈ U and {0′′} ∈ V .

�

Exercise 4.9 1. In the topological space Rhar, what is the closure of the set H =

{1/n}n∈N?
2. In the topological space Rhar, what is the closure of the sets H− = {−1/n}n∈N?
3. Is it possible to find disjoint open sets U ,V in Rhar such that 0 ∈ U and H ⊂ V ?

Solution:

1. There are no limit points to the set because all sets are of the form (a, b) or (a, b)−
H. Thus for any neighborhood about a point will always either not contain H or
it will exclude H, so by definition no point can be a limit point of H.

2. For H−, the limit points just consists of the set {0}. This is any open set which
contains 0 must contain points of the sequence { 1

n |n ∈N}. The difference between
this question and question (1.) is that in the first question, the points in the
sequence were always excluded whenever they interesected any open set containing
0, whereas that’s not the case here since we don’t care about excluding the negative
harmonics.

3. For any open set U containing 0, we must have that there exists an open set U0 of
0 such that 0 ∈ V ⊂ U . And since the basic open sets are (a, b) or (a, b)−H, there
must exist points to the right of 0 in the set U ; otherwise, 0 would be a limit point.
Because any open set containing H must contain points arbitrarily close to 0, it is
inevitable for U and V to intersect. This is because for any open set which contains
0, say (a, 0 + ε) for ε > 0 and a < 0, there exsits an n ∈ N such that 1

n < ε and
therefore any open set containing H must contain this point and hence intersect
with (a, 0+ ε). Of course, any set of the form (0− ε, b) for b > 0 will intersect with
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any set contanining H by the same argument as before. Thus there does not exist
disjoint open sets U ,V such that 0 ∈ U and H ⊂ V .

�

Exercise 4.10 1. In Hbub, what is the closure of the set of rational on the x-axis?
2. In Hbub, which subsets of the x-axis are closed?

3. In Hbub, let A be a countable set on the x-axis and z a point on the x-axis not in

A. Then there exist open sets U and V such that A ⊂ U and z ∈ V . (Do you need the
countability hypothesis on A?)
4. In Hbub, let A and B be countable sets on the x-axis such that A and B are disjoint.

Then there exists open sets U and V such that A ⊂ U and B ⊂ V .
5. In Hbub, let A be the rational numbers and let B be the irrational numbers. Do

there exist disjoint open sets U and V such that A ⊂ U and B ⊂ V ?

Solution:

1. Suppose that a limit point was no a rational on the x-axis. Obviously such a point
cannot be one which isn’t on the x-axis since we could easily find an open set which
contained that point but didn’t intersect the x-axis. Thus our candidates for limit
points for our set are reduced to irrationals on the x-axis. But observe that any
open set which contains a rational doesn’t necessarily contain an irrational. For
example, any basic open set about a rational on the x-axis given by (p, 0) does not
contain an irrational. Thus the closure of the rationals is simply the rationals.

2. Consider the set {(x, y) ∈ R2|y > 0}; that is, everything but the x-axis. Observe
that this set is simply the uncountable union of all possible basic open sets of the
form B((x, y), r) where 0 < r ≤ y, so therefore this set must be open. Thererfore,
its complement, the x-axis, must be closed. Furthermore, if we included in our
uncountable union an arbitrary number of sticky bubbles of the form B((x, y), r)∪
{(x, 0}, which would form an open set, the complement would be a subset of the
x-axis and it would be closed since the complement of open sets are closed. Thus
all subsets of the x axis are open.

3. We argue that the countability hypothesis is not necessary. For any set U containing
A, U must contain a set of sticky bubbles Bx of radius rx containing each point x ∈
A. Then if we can construct a sticky bubble of radius r′ < max{

√
(z − x)2 + r2

x −
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r2
x} about z, we see that U and V do not intersect. Thus there does exists disjoint
open sets U and V such that A ⊂ U and z ∈ V .

4. Let a ∈ A, b ∈ B, and arbitrarily assign sticky balls {Ba} each of radius ra > 0 for
each a ∈ A. Then for each b = (xb, yb), assign b a sticky ball Bb of radius r such
that r < r′ for all

r′ ∈ {
√
(xa − xb)2 + r2

a− r2
a|ra is the radius of the sticky ball of point (xa, ya) ∈ A}.

If we do this for each point b ∈ B, and union the sticky balls {Bb}, we’ll obtain an
open set V such that B ⊂ V . If we union all the sticky balls Ba, we’ll again obtain
an open set U such that A ⊂ U , which proves the exercise.

5.

�

Exercise 4.11 Check that the arithmetic progressions form a basis of a topology on
Z.

Solution: We can use Theorem 4.3 for this. Let the set of arithmetic progression be B

and let q ∈ Z. Then observe that q ∈ {p · n : n ∈ Z} ∈ B. Thus condition (1) of
Theorem 4.3 is satisfied.

Now let U ,V ∈ B, and suppose U = {a1n+ b1 : n ∈ Z} and V = {a2n+ b2 : n ∈ Z}.
Suppose U ∩ V is nonempty. Then q ∈ U ∩ V for some q ∈ Z. However, in order for q to
be in the intersection, we must have tht a1 and a2 are coprime. If they are coprime, then
by Bezout’s theorem that there exist integers m1,m2 such that m1n1 +m2n2 = 1. We
then know by the Chinese Remainder Theorem that q = b1 + (b2 − b1)m1a1. Therefore,
we see that

q ∈ {b1 + (b2 − b1)na1 : n ∈ Z} ⊂ U ∩ V .

Since this is an arithmetic progression, this set lies in B. Therefore, we see that condition
(3) of Theorem 4.3 is satisfied, so that the arithmetic progressions do form a basis for a
topology on Z.

�

Theorem 4.12 There are infinitely many primes.
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Proof: Let p be prime and consider the set pZ. Observe that this is a closed set since
it is the complement of the union of sets pZ + 1, . . . , p+(p− 1) which are of the forms
of basic open sets.

Now observe that nonempty open sets are always open. This is because every open
set must contain a basic open set, which are by definition infinite sets.

Thus suppose that there are infinitely many primes p1, p2, . . . , pn. Then

n⋃
i=1

piZ

is a closed set as it is the finite union of closed sets. However, note that
(

n⋃
i=1

piZ

)c
= {−1, 1}.

This should be an open set, since ⋃ni=1 piZ is closed. But this is a contradiction since
{−1, 1} is a finite set and hence cannot be open. Thus there must be an infinite number
of primes.

�

Exercise 4.18 Let X be totally ordered by <. Let S be the collection of sets of the
following forms

{x ∈ X|x < a} or {x ∈ X|x > a}

for a ∈ X. Then S forms a subbasis for the order topology on X.

Solution: We can prove this using Theorem 4.14. Observe that the first condition is
satisfied because S ⊂ T. Next, let p ∈ U ∈ T, and suppose that U is of the form
{x ∈ X|x < a} or {x ∈ X|a < x}. Then observe that U ∈ S so that

1⋂
n=1

U ⊂ U .
Finally, suppose that U is of the form {x ∈ X|a < x < b}. Then we can simply intersect
the sets S1,S2 ∈ S where S1 = {x ∈ X|a < x} and S2 = {x ∈ X|x < b} to get that

2⋂
n=1

Sn = {x ∈ X|a < x < b} ⊂ U . Thus by condition (2) of Theorem 4.14, we have that
S must be a subbasis for the order topology.

�
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Exercise 4.19 Verify that the order topology on R with the usual < order is the stan-
dard topology on R.

Solution: Every set of the order topology is of the form {x ∈ R|x < a} or {x ∈ R|a <
x} or {x ∈ R|a < x < b} where a, b ∈ R.

Consider a point p in a set U of the form of {x ∈ R|x < a} or {x ∈ R|a < x}. Then
observe that p ∈ B(p, |a− p|) is a ball containing p inside U . By definition, these are
therefore open sets in the standard topology on R.

If instead U is of the form {x ∈ R|a < x < b}, then for any p ∈ U observe that
p ∈ B(p, min{p− a, b− p}), so that U must also be open in the standard topology on R.

Finally observe that every open set in the standard topology on R is of the form of
a set in the order topology. This is because every open set in Rstd can be bounded from
either one or both ends, both possibilities which are captured by elements of the standard
topology on R. Thus we can conclude that the order topology on R with the usual <
order is the standard topology on R.

�

Exercise 4.20
Draw pictures of various open sets in the lexigraphically ordered square.
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Figure 2: Here we consider three open sets {(x, y) ∈ X|(x, y) < 1}, {(x, y) ∈
X|(x, y) < (1, 1/2)}, {(x, y) ∈ X|(1/2, 1/2) < (x, y) < (1, 1)} and {(x, y) ∈ X|(x, y) <
(1/2, 1/2)} and sketch their drawings. Since these are technically basis elements, we can
also imagine unioning these sets around to obtain new open sets to imagine what the
topology looks like.

4.21 In the lexigraphically ordered square find the closures of the following subsets:

A =
{( 1

n
, 0
)
|n ∈N

}
B =

{(
1− 1

n
, 1
2

)
|n ∈N

}
C = {(x, 0) |0 < x < 1}

D =
{(
x, 1

2

)
|0 < x < 1

}
E =

{(1
2, y

)
|0 < y < 1

}
.

Solution: For set A, we argue that the set of limit points or the set A is simply the point
(0, 1). This is because for any open interval containing (0, 1), we must have the set wrap
back around and include a set of points (x, 0) where x > 0 and is very small. Since the
sequence { 1

n} converges to 0, we see that an open set (0, 1) must include points of the
sequence. Therefore (0,1) is a limit point.
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For set B, observe that there are no limit points of B. The only possible limit point
would be (1, 1

2), but we can find an open set containing this point but no point of B. For
example, the set {(x, y) ∈ X|(1, 0) < (x, y)} contains (1, 1

2) but not any point of the set
B.

For the set C, we can see that the set of limit points will simply be the set {(x, 1) ∈
X|0 ≤ x < 1} ∪ {(1, 0)}. Basically, the the closure is the top and bottom lines of the
unit square, minus the two points (0, 0) and (1, 1).

The set D has no limit points. This is because for any point p = (a, b), we can sim-
ply construct an open neighborhood about p given by

{(a, y) ∈ X||y− b| < min{|b− 1
2 |, b− 1}}

which does not intersect the set if b 6= 1
2 . In the case where b = 1

2 , any neighborhood of
the form

U = {(x, y) ∈ X|(a, 0) < (x, y) < (a, 1)}

contains p, but (U − {p}) ∩D = ∅. Therefore, there are no limit points to the set so
D = D.

For the set E, we see that the set of limit points is simply {(1
2 , 0), (1

2 , 1)}. This is
because any open set containing either of these points must definitely contain points of
the set E. Thus the closure is E ∪ {(1

2 , 0), (1
2 , 1)}

�

Theorem 4.25 Let (X,T) be a topological space and Y ⊂ X. Then the collection of
sets TY is in fact a topology on Y .

Proof: We can show that TY is a topology by showing that it satisfies the four criteria
for the definition of a topology.

1. Since TY = {U |U = V ∩ Y where V ∈ T}, we can take V = ∅ to observe that
∅ ∈ TY .

2. Next, since X ∈ T, we can take V = X to observe that X ∩ Y = Y ∈ TY .

3. Suppose U ,V ∈ TY and consider U ∩ V . Since U = U ′ ∩ Y and V = V ′ ∩ Y for
some U ′,V ′ ∈ T, we have that U ∩V = (U ′ ∩Y )∩ (V ′ ∩Y ) = (U ′ ∩V ′)∩Y . Since
(U ′ ∩V ′) ∈ T, then we know that (U ′ ∩V ′)∩Y = (U ∩V ) ∈ TY . Thus TY is closed
under finite intersections.
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4. Now suppose Uα ∈ TY for all α ∈ λ, where λ is an arbitrary index. Then for each α
there must exist a Vα ∈ T such that Uα = Vα ∩ Y . Thus ⋃

α∈λ
Uα =

⋃
α∈λ

(Vα ∩ Y ) =⋃
α∈λ

(Vα) ∩ Y . Since ⋃
α∈λ

Vα ∈ T, we know that ⋃
α∈λ

Vα ∩ Y ∈ TY =⇒ ⋃
α∈λ

Uα ∈ TY .
Thus we have that arbitrary unions of open sets are contained in TY .

Thus, we have that TY is a topology on Y .

�

Exercise 4.26 Consider Y = [0, 1) as a subspace for Rstd In Y , is the set [1/2, 1)
open, closed, neither or both?

Solution: The set [1/2, 1) is not open but is closed under this topology. Firstly, there
does not exist an element V ∈ Rstd such that [1/2, 1) = V ∩ Y . Thus [1/2, 1) is not
open in TY . However, it is a closed set since it contains its only limit point 1/2. This is
because every open set which contains 1/2 must intersect with [1/2, 1). Thus [1/2, 1) is
closed in the Y subspace topology.

�

Exercise 4.27 Consider a subspace Y of a topological space X. Is every subset U ⊂ Y

that is open in Y also open in X?

Solution: Consider an open set U ∈ TY . Then there exists a V ∈ TX such that U =

V ∩ Y . While the set U is then technically open in TY , it is possible that V ∩ Y is not
an open set in TX , which would only happen in Y /∈ TX . Thus we must have that Y be
open in order for the above statement to be true.

�

Theorem 4.28 Let (Y ,TY ) be a subsapce of (X,T). A subset C ⊂ Y is closed in
(Y ,TY ) if and only if there is a set D ⊂ X, closed in (X,T), such that C = D ∩ Y .

Proof: Let us first prove the forward direction. Suppose D ⊂ X is closed in (X,T)
and let C = D ∩ Y . Since D is closed in (X,T), we have that X −D is open in the same
topology. Now since X −D ∈ T, observe that (X −D) ∩ Y ∈ (Y ,TY ) by definition.
Since (X −D) ∩ Y is open in (Y ,TY ), the complement Y − ((X −D) ∩ Y ) is closed.
However, observe that Y − ((X −D) ∩ Y ) = Y − (Y −D) = D ∩ Y = C, so that we
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have concluded that C is a closed set.

Now we prove the other direction. Suppose that C is closed in (Y ,TY ). Since C is
closed, Y −C is open in (Y ,TY ). Thus by definition, there exists a set A ∈ TX such that
A∩ Y = Y −C. Since A is open, we know that X −A is closed in (X,T). Call this set
D. Now observe that

D ∩ Y = (X −A) ∩ Y = (Y −A) ∩ Y = C

because A∩ Y = Y −C. Thus we have found a set D which closed in (X,T) such that
C = D ∩ Y . Having proved both direction, this proves the theorem.

�

Corollary 4.29 Let (Y ,TY ) be a subspace (X,T). A subset C ⊂ Y is closed in
(Y ,TY ) if and only if ClX(C) ∩ Y = C

Proof: First we’ll prove the forward direction. Suppose that ClX(C) ∩ Y = C. Then
let p be a limit point of C in the topological space (Y ,TY ). Then for every set U open
in (Y ,TY ) which contains p we have that (U − {p}) ∩ C 6= ∅. Since U is an open set,
there exists a set V ∈ TX such that U = V ∩ Y . Thus (V − {p}) ∩C 6= ∅ for all open
sets V ∈ TX which contain p. This implies that p ∈ ClX(C). But p ∈ ClX(C) ∩ Y = C,
so that C contains all of its limit points in (Y ,TY ). Thus C is closed in (Y ,TY ).

Now let us prove from the other direction. Suppose that C is closed in (Y ,TY ). Then C
contains all of its limit points in this topological space. We previously showed that all of
the limit points in C in (Y ,TY ) must be in ClX(C). And since C ⊂ Y , we must have
that ClX(C)∩ Y = C, which is what we set out to show in this direction. Having proven
both directions, this proves the corollary.

�

Exercise 4.31 Consider the following subspaces of the lexicographically ordered square.
1. D = {(x, 1

2)|0 < x < 1}
2. E = {(1

2 , y)|0 < y < 1}
3. F = {(x, 1)|0 < x < 1}.
As sets they are all lines. Describe their relative topologies, especially noting any con-
nections to topologies you have seen already.

Solution:
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1. For this set, the relative topology establishes that open sets are simply subsets of the
line D. This is because we can imagine creating open sets in the lexicographically
ordered squared and intersecting them with out line segment to contain either a
point or a subset of D. Thus all subsets of D are open sets, which is similar to the
discrete topology we encountered earlier.

2. The relative topology established by this set only contains the empty set and the
set E itself, which mirrors the indiscrete topology. We arrive at this conclusion by
the fact that intersecting this set with an open set simply yields either the empty
set or E itself.

3. By the definition of the relative topology, we see that

TF = {U : U = F ∩ V ,V ∈ Tsq}

where Tsq is the topology of the lexicographically ordered square. If V ∈ Tsq and
V ⊂ F , then obviously V ∈ TF . Thus we suspect that subsets of F will be in
TF . In our case, the subsets of F include the empty set, intervals of the form
a < x < b, a ≤ x < b, a ≤ x ≤ b, and a ≤ x ≤ b where a, b ∈ (0, 1). However,
the last two forms are not allowed in the topology, since the rightmost endpoints
are not included. Because of this, we see that TF has a connection with RLL,
whose topology consists of intervals where the left hand point is inclusive but the
righthand point is not inclusive.

�

Exercise 4.32 Verify that the collection of basic open sets above satisfies the condi-
tions of Theorem 4.3, thus confirming that this collection is a basis for a topology.

Solution: First observe that the first condition of Theorem 4.3 is satisfied, since for any
(p, q) ∈ X × Y there exist open sets U ∈ X and V ∈ Y such that p ∈ U and q ∈ V .
Thus there exists a basic open set U × V such that (p, q) ∈ U × V , which shows that
each point of X × Y is in some basic open set.

Now suppose U ,V are basic open sets. Then U = A× B and V = C ×D for some
open sets A,C ∈ TX and B,D ∈ TY . Let p ∈ U ∩V = (A∩C)× (B ∩D). Then observe
that (A∩C) ∈ TX and (B ∩D) ∈ TY . Since the basis consists of the product of all open
sets in X and all open sets in Y , we see that (A ∩C)× (B ∩D) must be a basic open
set. Thus we have a basis element W = (A ∩C)× (B ∩D) such that p ∈ W ⊂ U ∩ V ,
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which satisfies the second part of Theorem 4.3. Thus the proposed collection is in fact a
basis for the topology.

�

Exercise 4.33 Draw examples of basic and arbitrary open sets in R2 = R×R using
the standard topology on R. Find (i) an open set in R×R that is not the product of
open sets, and (ii) a closed set in R×R that is not the product of closed sets.

Exercise 4.34 Is the product of closed sets closed?

Solution: Yes. Let p ∈ U and q ∈ V . Then for every open set Up containing p

and Vq containing q, we’ll have that Up ∩ U 6= ∅ and Vq ∩ V 6= ∅. Therefore we
see that (Up × Uq) ∩ (U × V ) 6= ∅, meaning that (p, q) ∈ U × V . Thus we have that
U × V ⊂ U × V .
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Now suppose (p, q) ∈ U × V . Then every basic open set of the form U ′ × V ′ containing
(p, q) intersects U × V . In other words, for every open set U ′ ∈ TX containing p, then
U ′ ∩ U 6= ∅. Similarly, for every open V ′ ∈ TY containing q, V ′ ∩ V 6= ∅ Thus we must
have that p ∈ U and q ∈ V , so that (p, q) ∈ U × V , which implies that U × V ⊂ U × V .

Since U × V ⊂ U × V and U × V ⊂ U × V , we have that U × V = U × V . Thus if
U ,V are closed, U = U and V = V , so U × V = U × V . So the product of closed sets is
in fact closed.

�

Exercise 4.35 Show that the product topology X × Y is the same as the topology
generated by the subbasis of inverse images of open sets under the projection functions,
that is the subbasis is {π−1

X (U)|U is open in X} ∪ {π−1
Y (V )|V is open in Y }.

Solution: Let U be open. Then for p ∈ U , there exists a basic open set W ∈ Tprod, the
product topology, such that

p ∈ W ⊂ U .

Observe that W = Wx ×Wy where Wx ∈ Tx and Wy ∈ Ty. Note also that

W = Wx ×Wy = (Wx × Y ) ∩ (X ×Wy).

Let S be the set of inverse images of open sets under the projection functions. Then we
also know that π−1

X (Wx) = Wx × Y , while π−1
X (Wy) = X ×Wy, which are in S. We can
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then state that
W = π−1

X (Wx) ∩ π−1
Y (Wy).

Therefore, we see that
p ∈ π−1

X (Wx) ∩ π−1
Y (Wy) ⊂ W .

Since for each V ∈ S we have that V ∈ Tprod, (1) S ⊂ Tprod and (2) for any open
set U and point p ∈ W there exists elements π−1

X (Wx), π−1
X (Wy) ∈ S such that p ∈

π−1
X (Wx) ∩ π−1

Y (Wy) ⊂ U , we have by Theorem 4.14 that S is a subbasis of the product
topology, as desired.

�

Exercise 4.36 Using the standard topology on R, is the product topology R×R the
same as the standard topology on R2?

Solution: Consider B(p,R), a disk of radius R centered at p = (px, py), which is an open
set in Rstd.

Observe that for each q = (qx, qy) ∈ B(p,R), we can construct a set Uq = (qx− ε, qx+ ε)

containing qx if

px −R < qx − ε qx + ε < px +R

and similarly we can for the set Vq = (qy − δ, qy + δ) containing qy if

py −R < qy − δ qy + ε < py +R.

Therefore, q ∈ U × V ⊂ B(p,R). Since for each q ∈ B(p,R) we can find an open
Wp = Uq × Vq such that p ∈ Wq ⊂ B(p,R), we see that

⋃
q∈B(p,R)

Wq = B(p,R).

Thus we see that the product topology is a subset of the standard topology on R. Now
consider a basic open setW = U ×V in the product topology on R×R. Thus U = (a, b)
and (c, d), where a, b, c, d may or may not be finite.

Observe that for any p = (px, py) ∈ U × V , we can contain it in a ball B(p, ε) where

ε < min{min{b− px, px − a}, min{c− py, py − c}}.
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Therefore, we see that for any p ∈ U × V there exists an open ball B(p, ε) such that
p ∈ B(p, ε) ⊂ U × V . Hence ⋃

p∈U×V
B(p, εp) = U × V

so that the standard topology is a subset of the product topology. Since we show the
converse, we must have that the standard topology is equivalent to the product topology
on R.

�

Exercise 4.37 A basis for the product topology on ∏
α∈λ

Xα is the collection of all sets
of the form ∏

α∈λ
Uα where Uα is open in Xα for each α and Uα = Xα for all but finitely

many α.

Solution: Consider an open set U in the product topology Tprod. Then for each p ∈ U ,
there exists a subbasic open set in S such that

p ∈
n⋂
i=1

π−1
αi (Uαi) ⊂ U

Now consider the family of sets described in the problem, and call this set T′prod. Observe
that we can write

n⋂
i=1

π−1
αi (Uαi) = · · · ×Uα1 × · · · ×Uαn × · · · =

∏
α∈λ

Uα

where Uα = Xα for all α ∈ λ\{α1,α2, . . . ,αn} and Uα1 ,Uα2 , . . . Uαn are all restricted
open sets in the spaces Xα1 ,Xα2 , . . . Xαn , respectively. Thus S ⊂ T′prod.

p ∈
∏
α∈λ

Uα ⊂ U . (1)

Now observe that for any V ∈ T′prod, V =
∏
α∈λ

Uα where Uα is open in Xα for each α and
Uα = Xα for all but finitely many α,

V =
∏
α∈λ

Uα = · · · ×Uα1 × · · · ×Uαn × · · · =
n⋂
i=1

π−1
αi (Uαi)

Thus we see that T′prod ⊂ S, so that these two collections of sets generate the same
topology: namely, the product topology. More specifically, we see that (1) T′prod ⊂ Tprod

and (2) equation (1) satisfies Theorem 4.3, which proves that Tprod forms a basis for the
product topology, as desired.

�
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Exercise 4.38 Let T be the topology on 2X with basis generated by the subbasis S.

1. Every basic open set in 2X is both open and closed.

2. Show that if a collection of subbasic open sets of 2X has the property that every
point of 2X lies in at least one of those subbasic open sets, then there are two
subbasic open sets in that collection such that every point of 2X lies in one of those
two subbasic open sets.

3. Show that if a collection of basic open sets of 2X has the property that every point
of 2X lies in at least one of those basic open sets, then there are a finite number of
basic open sets in that collection such that every point of 2X lies in one of those
basic sets.

Solution:

1. Consider an arbitrary basic open set U in the product topology of 2X . Then observe
that U is of the form

U = {f ∈ 2X : f(a1) = δ1, f(a2) = δ2, . . . , f(an) = δn}

where a1, . . . , an ∈ A and δ1, δ2, . . . , δn ∈ {0, 1}. Then observe that

U c = {f ∈ 2X : f(a1) = |δ1 − 1|, f(a2) = |δ2 − 1|, . . . , f(an) = |δn − 1|}

Since U is open, U c is closed. However, U c is still of the form of basic open set,
which means that U is closed. Therefore, every basic open set in 2X is open and
closed.

2. Let our subbasic open cover be {Uα}α∈λ where Uα ∈ T for all α ∈ λ. Now suppose
there aren’t two subbasic open sets such that every point of 2X lies in one or the
other. Then observe that this is not a cover of 2X since, if a point of 2X lies in one
set U , then it does not lie in U c. Thus in this case it would not even be a cover.

3. Let {Uα}α∈λ be our cover as previously defined. Fix p ∈ 2X , and observe it lives
in some subbasic set

U = {f ∈ 2X : f(a1) = δ1, f(a2) = δ2, . . . , f(an) = δn}.

Observe that every point of x either lies in this set, or its coordinate values f(a1), f(a2), . . . , f(an)
differ in at least one coordinate from the restriction offered by U . Since every coor-
dinate can have at most 2 different values, we see that there are 2n different ways
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that the coordinate values f(a1), f(a2), . . . , f(an) could differ from the restriction
offered in U . Thus we can have at most 2n + 1 basic open sets which contain all
the points in X, which means that there are at most a finite number of basic open
sets that cover every point of 2X .

�

Exercise 4.39 In the product space 2R, what is the closure of the set Z consisting of
all elements of 2R that are 0 on every rational coordinate, but may be 0 or 1 on any
irrational coordinate? Equivalently, thinking of 2R as subsets of R, what is the closure
of the set Z consisting of all subsets of R that do not contain any rational?

Solution: Observe that

Zc =
∞⋃
n∈N

{f : 2R|f(a1) = f(a2) = · · · = f(an) = 0, a1, a2, . . . , an ∈ Q}

where a1, a2, . . . , an are distinct but arbitrarily chosen of Q. Note that this is an un-
countable union of open sets, since we are only making a finite number of restrictions on
the coordinates. Therefore Z must be closed, so Z = Z.

�

Exercise 4.40 Find a subset A of 2R and a limit point x of A such that no sequence
in A converges to x. For an ever greater challenge, determine whether you can find such
an example if A is countable.

Solution: Observe that the point p ∈ 2R such that

p(a) = 1 ∀a ∈ {π+ q : q ∈ Q}

p(a) = 0 ∀a ∈ R− {π+ q : q ∈ Q}

is a limit point of Z, the set consisting of all elements of 2R that are 0 on every rational
coordinate and 0 or 1 on all others. (Note: π was chosen randomly. We could have done
it with any other irrational. All we want is a point such that it’s x-th coordinate is 1 for a
countable number of irrational x. We know Q is countable, so adding π to every element
of this set generates a countable set of irrationals, which is how we want to design our
point.)
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Any open set containing p must be of the form

{f ∈ 2R|f(π+ q1) = f(π+ q2) = · · · = f(π+ qn) = 1, q1, q2, . . . , qn ∈ Q}

and hence will intersect Z.

By Theorem 3.30, if there exists a sequence of elements of Z which converge to p then
p ∈ Z. But in 4.39 we saw Z = Z, and clearly p 6∈ Z. Hence p 6∈ Z, so there is no
sequence of elements of Z which converge to p.

�

Exercise 4.41 Let Rω be the countable product of copies of R. So every point in Rω

is a sequence (x1,x2,x3, . . . ). Let A ⊂ Rω be the set consisting of all points with only
positive coordinates. Show that in the product topology, 0 = (0, 0, 0, . . . ) is a limit point
of the set A, and there is a sequence of points in A converging to 0. Then show that in
the box topology, 0 = (0, 0, 0, . . . ) is a limit point of the set A, but there is no sequence
of points in A converging to 0.

Solution: Let U be an open set containing 0. Suppose 0 is in the basic open set B of
the product topology so that B = Πα∈ωUα where Uα is open in R, and Uα = R for all
but finitely many α. Then for each α ∈ ω corresponding to Uα 6= R, the open set must
contain 0, and hence it must contain positive points of R. Since the rest of the Uα’s such
that Uα = R obviously contain positive coordinates of R, we see that the basic open set,
and hence the set U − {0}, must have a nonempty intersection with A. Therefore 0 is a
limit point of A in the product topology.

I claim that the sequence ( 1
n , 1

n , . . . ) is a sequence which converges to 0 in the product
topology. Observe that we can contain 0 in a basic open set B, where again B = Πα∈ωUα

and Uα is open in R while Uα = R for all but finitely many α. Thus for each Uα 6= R,
let nα ∈N be such that 1

nα
∈ Uα. Now let

n = min
{
nα

∣∣∣∣ 1
nα
∈ Uα

}
.

Then for i > n, we see that (1
i ,

1
i , . . . ) ∈ B. Thus every open set about 0 will contain

points of the sequence, which shows that this sequence converges to 0 in the product
topology.
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Now we’ll show that there is no sequence which converges to 0 in the box topology.
Suppose for the sake of contradiction that there is a sequence of points

(a11 a12 a13 . . . )

(a21 a22 a23 . . . )

(a31 a32 a33 . . . )

which converge to 0. Then observe that we can construct an open set about 0 in the
box topology as follows. Let (a1, a2) contain 0 but exclude (a11). Let (a3, a4) contain 0
but exclude (a22). If we continue in this fashion, we’ll construct an open set in the box
topology

(a1, a2)× (a3, a4)× . . .

which all contain 0 but exclude every point of the proposed sequence. The fact that
we can create this open set containing 0 but no element of the sequence contradicts our
claim, which shows that no sequence in the box topology can converge to 0.

�

Exercise 4.42 Show that the set 2N in the box topology is a discrete space, whereas
the set 2N in the product topology has no isolated points.

Solution: Observe that we can think of an open set here under the box topology as a
a set of points where we are allowed to make an infinite number of restrictions on each
coordinate. With this perspective, it is then clear that every point is a basic open set,
since every point p has a restriction on every single coordinate. Since every point is open,
we have that all subsets of 2N are open, which implies that the set is a discrete space
under the box topology.

Consider any basic open set in 2N under the product topology:

U = {f ∈ 2N : f(a1) = δ1, . . . , f(an) = δn} δ1, . . . , δn ∈ {0, 1}

Observe that the set contains the point

p = (. . . ,
f(a1)︷︸︸︷
δ1, . . . ,

f(a2)︷︸︸︷
δ2, . . . ,

f(an)︷︸︸︷
δn , . . . ,

unrestricted by U︷ ︸︸ ︷
δn+1 , . . . )

where δn+1 ∈ {0, 1}. But U also contains another point p′ such that

p′ = (. . . ,
f(a1)︷︸︸︷
δ1, . . . ,

f(a2)︷︸︸︷
δ2, . . . ,

f(an)︷︸︸︷
δn , . . . ,

unrestricted by U︷ ︸︸ ︷
1− δn+1 , . . . ).

Thus no basic open set in 2N in the product topology contains a single element. Hence,
there are no isolated points.
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�
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5.1 Hausdorff, Regular and Normal Spaces.

In the definition of a T1 space, isn’t it sufficient to simply state that there exists an open
set U about x such that y /∈ U?

Theorem 5.1 A space (X,T) is T1 if and only if every point of X is closed.

Proof: First we’ll prove the forward direction. Suppose every point x ∈ X is a closed
set. Then X − {x} is open, so foe y ∈ X, y 6= x, there exists an open set U such that
y ∈ U and U ∩ {x} = ∅ =⇒ x /∈ U . Analogously, X − {y} is open so there exists an
open set V containing x such that x ∈ V but y /∈ V . Since x, y were arbitrary distinct
points of X, we have that X is a T1 space.

Now suppose that X is a T1 space. Consider an x ∈ X and suppose for a contradic-
tion that y ∈ X, y 6= x is a limit point of {x}. Then every open set of y must contain
x. However, this is not possible since x and y are distinct points, X is T1, and therefore
there exists an open set U containing x such that y /∈ U . Thus y can’t be a limit point,
which means that no element in X −{x} is a limit point of {x}. Therefore, x must be a
closed set, and since x was arbitrary this shows that every point of X must be a closed
set.

�

Exercise 5.2 Let X be a space with the finite complement topology. Show that X is
T1.

Solution: Observe that X − {x} is an open set in the finite complement topology for all
x ∈ X. Then its complement, X − (X − {x}) = {x} is closed. Therefore every point is
a closed set, and by the Theorem 5.1 we have that X is a T1 space.

�

Exercise 5.3 Show that Rstd is Hausdorff.

Solution: Consider any two distinct points x and y in R. Then observe that we can
construct the open sets B(x, ε/2) and B(y, ε/2) where |x− y| < ε so that B(x, ε/2) and
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B(y, ε/2) are disjoint but x ∈ B(x, ε/2) and y ∈ B(y, ε/2). Since x, y were distinct and
arbitrary, we have that Rstd is a Hausdorff space.

�

Exercise 5.4 Show that Hbub is regular.

Solution: We found earlier that all subsets of the x-axis are closed in Hbb. Thus if we
have a closed subset A and a point x /∈ U , we can use exercise 4.10(4) to show that there
must exist disjoint open sets U and V such that x ∈ U and A ⊂ V . Therefore, Hbub is
regular.

�

Exercise 5.5 Show that RLL is normal.

Solution: Let A, B be two disjoint closed sets. Consider a ∈ A, and observe that
RLL −B is an open set containing a. Therefore, there exists a basis element [x, y) such
that a ∈ [x, y) ⊂ RLL −B. Therefore, [a, y) ⊂ [x, y) ⊂ (RLL −B). Observe that we
can create open sets [a, y) for all a ∈ A. Thus let U =

⋃
a∈A

[a, y), which is open as it
is the arbitrary union of open sets. Similarly, if we take a b ∈ B and find a basic open
set [x′, y′) such that b ∈ [x′, y′) ⊂ RLL−A, then we can define an open set V =

⋃
b∈B

[b, y′).

Now U and V cannot intersect. Each member [a, y′) in the union of U is a subset
of RLL −B, while each member [b, y′) in the union of V is a subset of RLL −A, and if
they did intersect then this would require that for some a ∈ A, b ∈ B, [a, y)∩ [b, y′) 6= ∅.
However, this is impossible as this would imply that either b ∈ [a, y) or a ∈ [b, y′),
which cannot happen since [a, y) ⊂ RLL −B and [b, y′) ⊂ RLL −A. Thus we have that
U ∩ V = ∅. Since A and B were arbitrary disjoint closed sets in RLL, we see that X
must be normal by the definition of normality.

�

Exercise 5.6 1. Consider R2 with the standard topology. Let p ∈ R2 be a point not
in a closed set A. Show that

inf{d(a, p)|a ∈ A} > 0.
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(Recall that inf E is the greatest lower bound of a set of real numbers E.)
2. Show that R2 with the standard topology is regular.
3. Find two disjoint closed subsets A and B of R2 with the standard topology such that

inf{d(a, b)|a ∈ A and b ∈ B} = 0

4. Show that R2 with the standard topology is normal.

Solution:

1. Firstly we know that inf{d(a, p)|a ∈ A} ≥ 0 since the distance function is always
greater than or equal to zero. Thus we must simply show that it is not zero for
any a ∈ A where p /∈ A. First, observe that since p is not a limit point of A, there
exists an open set B(p, ε) containing p such that B(p, ε) ∩A = ∅. Therefore, we
have that inf{d(a, p)|a ∈ A} > ε > 0, proving the desired result.

2. Let x ∈ R2 and suppose A is a closed set not containing x. Since x is not a limit
point in A, there exists an open set U containing x such that U ∩A = ∅. Thus
let B(x, ε) ⊂ U . Then if we take each point in a ∈ A and construct an open ball
B(a, ε/2) where ε = inf{d(a, p)|a ∈ A}, then none of these balls intersect U . If we
union these set of balls, we’ll obtain an open set which contains A but is disjoint
with x. Thus by definition, R2 with the standard topology is regular.

3. Consider the set of points which lies on the line x = 0 and y = 1
x . The function y

converges to the y-axis, and while these two are sets are closed and disjoint we see
that the inf of their distances between their points converges to 0.

4. If we have two disjoint closed sets A and B, then no point of one set is a limit
point of the other. Construct a ball about each point of a given by B(a, ra) where
ra = 1

4 inf{d(a, b)|b ∈ B}. By part (a), we know that ra > 0. Similarly, let us
constuct balls about each point b ∈ B of radius rb =

1
4 inf{d(a, b)|a ∈ A} given by

B(b, rb) Now observe that no ball from the set {B(a, ra)|a ∈ A} intersects with any
ball from the set {B(b, rb)|b ∈ B}, and that A ⊂ ⋃

a∈A
B(a, ra) and B ⊂

⋃
b∈B

B(b, rb).

Since A and B were arbitrary closed sets, we must have that R2 is normal.

�

Note: this can be done for all metric spaces, since we didn’t necessarily appeal to explicit
properties of R2!

Theorem 5.7 1. A T2-space (Hausdorff) is a T1-space.
2. A T3-space (regular and T1) is a Hausdorff space, that is a T2-space.
3. A T4-space (normal and T1) is regular and T1, that is, a T3-space.
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Proof:

1. In a T2-space, we have that for every x distinct from y of the topological space, there
are disjoint open sets U ,V such that x ∈ U and y ∈ V . As an obvious consequence,
for each x 6= y, there exists open sets U ,V such that x ∈ U , y /∈ U and y ∈ V ,
x /∈ V . Since this holds for all distinct x, y ∈ X, we can conclude that by defintion
X is also a T1 space.

2. Let x, y be distinct. Since the space is regular, and because {x} is a closed set (by
T1), we know that for every y distinct form x, there must exist disjoint open sets
U ,V such that {x} ⊂ U and y ∈ V . In other words, there exists disjoint open sets
such that x ∈ U , y ∈ V . Thus by definition, we have a T2 space.

3. Observe that since we have a T1, every point is a closed set. Furthermore, since we
have normality, disjoint closed sets may be contained in disjoint open sets. Thus
consider a closed set A and a point x /∈ A. Then since {x} and A are disjoint closed
sets, we may construct disjoint open sets U , V such that {x} ⊂ U and A ⊂ V . By
definition, this shows that X is also a regular space. Since the space is regular, and
T1 by hypothesis, we know that the space must be T3 as desired.

�

Theorem 5.8 A topological space X is regular if and only if for each point p in X

and open set U containing p there exists an open set V such that p ∈ V and V ⊂ U .

Proof: First we prove the forward direction. Suppose that X is regular and consider
some p ∈ X.
Then let p ∈ U ⊂ X where U is an open set in X. Observe that U c is closed and p /∈ U c.
By regularity, there must exist disjoint open sets V ,W such that p ∈ V and U c ⊂ W .
Now observe that V ⊂ W c, and since W c is closed, we know that V ⊂ W c. However,
since U c ⊂ W ,

U c ∩W c = ∅ =⇒ U c ∩ V = ∅ =⇒ V ⊂ U .

Thus we have found an open set V such that p ∈ V and V ⊂ U , as desired.

Now we prove the reverse direction. Suppose for each p ∈ X and open set U con-
taining p, there’s an open set V such that p ∈ V and V ⊂ U .
Let A be a closed set not containing x ∈ X. As x is not a limit point of x, there exists
an open set U such that x ∈ U and U ∩A = ∅.
By hypothesis, there must exist an open V such that p ∈ V and V ⊂ U . Then observe
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U c

U

p

U c

U

W
V
p

The first picture shows an arbitrary open set U containing p. In the second picture,
we see that U c ⊂ W , so the boundary of W lives inside U . V is disjoint from W , but
contains p, so it also lives inside U .

that (1) x ∈ V and (2) A ⊂ (V )c and V ∩ (V )c = ∅. Since A was an arbitrary closed set
and x an arbitrary point not in A, and we contained A and x in disjoint, open sets, we
have that X must be a regular space by definition.

�

Theorem 5.9 A topological space X is normal if and only if for each closed set A in
X and open set U containing A there exists an open set V such that A ⊂ A and V ⊂ U .

Proof: Suppose that X is normal. Let A be a closed set, and U an open set about A.
Since U c is closed and disjoint from A, there must exist a pair of disjoint open sets V ,W
such that U c ⊂ V and A ⊂ W . Next observe that since V and W are disjoint, we know
that W ⊂ V c. Since V c is closed, we also know that W ⊂ V c. But V c ⊂ U ; Thus we
have that A ⊂ W ⊂ W ⊂ V c ⊂ U . Thus for every closed A and U containing A, there
exists an open set W such that A ⊂ W ⊂ U , as desired.

Now suppose that for a closed set A and an open set U containing A there exists an
open set V such that A ⊂ V and V ⊂ U . Let B be a closed set which is disjoint from
A. Since A and B have no limit points in common, we can see that for each a ∈ A, there
exists an open set Ua such that Ua ∩B = ∅. Thus let U ′ =

⋃
a∈A

Ua, which is an open set.

Then U ′ ∩B = ∅ by construction, and by assumption there must exist an open set W
such that A ⊂ W and W ⊂ U ′. Next observe that U c is an open set which contains B,
so by assumption there exists a W ′ such that B ⊂ W ′ ⊂ W ′ ⊂ U

c. Thus we see that
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A ⊂ W and B ⊂ W ′, and W ∩W ′ = ∅ since W ⊂ U but W ′ ⊂ U
c Since A and B were

arbitrary closed sets, and can be contained in disjoint open sets, we have that the space
is normal, which proves the assertion.

�

Presented in class 2/20
Theorem 5.10 A topological space X is normal if and only if for each pair of disjoint
closed sets A and B there are disjoint open sets U and V such that A ⊂ U , B ⊂ V and
U ∩ V = ∅.

Proof: First we prove the forward direction. Suppose that X is a normal space. Then
for every pair of disjoint closed sets A and B in X, there exist disjoint open sets such
that A ⊂ U and B ⊂ V . However, by Theorem 5.9, we know that there must exist open
sets U ′ and V ′ such that A ⊂ U ′ ⊂ U ′ ⊂ U and B ⊂ V ′ ⊂ V ′ ⊂ U . Since U ′ and V ′

are disjoint, this proves the existence of disjoint open sets containing A and B whose
intersection of their closures is empty.

Next, suppose that for every pair of disjoint closed sets A and B, there are disjoint
open sets U and V such that A ⊂ U and B ⊂ V and U ∩V = ∅. Since A,B are arbitrary
disjoint closed sets, A ⊂ U and B ⊂ V and U ∩ V = ∅, X satisfies the conditions of a
normal space, so X must be normal.

�

Theorem 5.11 (The Incredible Shrinking Theorem.) A topological space X is normal
if and only if for each pair of open sets U ,V such that U ∪ V = X, there exist open sets
U ′,V ′ such that U ′ ⊂ U and V ′ ⊂ V and U ′ ∪ V ′ = X.

Proof: First we prove the forward direction. Suppose X is normal and that U ,V are
open sets such that U ∪ V = X. Observe that U c ⊂ V and V c ⊂ U . By Theorem 5.9
there must exist open sets U ′,V ′ such that

U c ⊂ U ′ , U ′ ⊂ V ,

V c ⊂ V ′, V ′ ⊂ U .

Since (V ′)c is a closed and (V ′)c ⊂ V , we can apply Theorem 5.9 again to conclude that
there must exist a set U ′′ such that

(V ′)c ⊂ U ′′, U ′′ ⊂ V .

Now since U ′′ and V ′ are open sets such that U ′′ ⊂ V , V ′ ⊂ U , and U ′′ ∩ V ′ 6= ∅ because
(V ′)c ⊂ U ′′, we have that U ′′ ∪ V ′ = X.
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Thus this finishes the proof in this direction. Next we prove the other direction. Suppose
that for every pair of open sets U ,V ⊂ X such that U ∪ V = X, there exists open sets
U ′,V ′ such that U ′ ⊂ U and V ′ ⊂ V .

Let A and B be disjoint closed sets in X. Observe that Ac, Bc are open sets such
that Ac ∪Bc = X. Thus there must exist open sets U ,V such that

U ⊂ Ac , V ⊂ Bc, U ∪ V = X.

Next observe that

(Ac)c ⊂ (U)c ⊂ U c =⇒ A ⊂ (U)c ⊂ U c

(Bc)c ⊂ (V )c ⊂ V c =⇒ B ⊂ (V )c ⊂ V c

Since U ∪ V = X, we have that U c ∩ V c = ∅ by DeMorgan’s laws. Hence, (U)c and
(V )c are disjoint open sets such that A ⊂ (U)c and B ⊂ (V )c. Thus by definition, X is
normal.

�

Exercise 5.12
1. Describe an example of a topological space that is T1 but not T2.
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2. Describe an example of a topological space that is T2 but not T3.
3. Describe an example of a topological space that is T3 but not T4.

1. Finite complement topology is an example. First, every set of the form X − {p}
where p ∈ X is open, so the complement X − (X −{p}) = {p} is closed. Hence by
Theorem 5.1, X is T1.
Now suppose X is T2, Then for all p, q ∈ X and p 6= q, there exists disjoint, open
sets U ,V such that p ∈ U , q ∈ V . However, U ∩ V =⇒ V ⊂ U c. But this is
a contradiction since U c is finite, by construction, and V must at least be infinite
(since we know that V c is finite.) Thus X is not T2.

Another example would be the countable complement topology, and the proof is
almost exactly as the one presented for the finite complement topology.

2. The harmonic set is T2 but not T3. This is because for any two points p, q ∈ R we
can contain them in disjoint open sets (a, b) and (c, d) where a < p < b < c < q < d

or c < q < d < a < p < b. If either p or q are in H, then it is vacuously true that
we can contain them in an open set disjoint from any open set containing another
point because there are no open sets which contain elements of H.

The harmonic set is not T3 since (1) H is a closed set (as it has no limit points)
and (2) no open set can contain H. Therefore, it cannot be regular, and hence not
T3.

3. In Exercise 5.4, we showed that Hbub is regular. Observe that by Exercise 4.10.3
every point on the x-axis can be contained in disjoint open sets, and it is trivial
that two distinct points in {(x, y) : y > 0} can be contained in disjoint open sets.
Thus Hbub is T3. However, by Exercise 4.10.5 the rationals and irrationals on the
x-axis cannot be contained in disjoint open sets, and the rationals and irrationals
are closed sets. Hence Hbub is not normal. Therefore, Hbub is T3 but not T4.

Exercise 5.14 Show that Hbub is not normal.

In the previous chapter, we saw that there does not exist disjoint open sets U and V in
Hbub such that Q ∈ U and R−Q ⊂ V . However, observe that Q and R−Q are closed
sets. With this example we see that Hbub cannot be a normal set.

Theorem 5.15 Order topologies are T1, Hausdorff, regular and normal.
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Proof: (T1.) Suppose X has the order topology. Let a ∈ X. Observe that {x ∈ X|a <
x}∪{x ∈ X x > a} is the union of two open sets, so it is open, and hence its complement,
which is {a}, is closed. Thus every singleton set is a closed set, so X is T1.

(Hausdorff.) Consider two distinct points a, b ∈ X, and suppose without loss of gener-
atlity that a < b. If there exists an element c ∈ X such that a < c < b then

{x ∈ X|x < c} and {x ∈ X|c < x}

are two disjoint open sets which contain a, b respectively.
If there is no c ∈ X such that a < c < b, then

{x ∈ X|x < b} and {x ∈ X|a < x}

are two disjoint open sets which contain a, b respectively. Thus X is also a Hausdorff
space.

(Regular.) Now let A be a closed set and suppose x /∈ A. Since x is not a limit
point of A, we see that there must exist an open set U which contains x and U ∩A = ∅.
Then a open set which is disjoint from U and contains A is Ac − U , which shows that
the space is regular.

�

Theorem 5.16 Let X and Y be Hausdorff. Then X × Y is Hausdorff.

Proof: If X and Y are both Hausdorff, then for two distinct p = (px, py) and q =

(qx, qy) both in X × Y , there exists disjoint open sets Upx ,Uqx ∈ TX such that px ∈ Upx ,
qx ∈ Uqx and another pair of disjoint sets Vpy ,Vqy ∈ TY such that py ∈ Upy and qy ∈ Uqy .
Now observe that p ∈ Upx × Upy and q ∈ Vqx × Vqy while Upx × Upy is disjoint with
Vqx × Vqy . Since p, q were arbitrary distinct points in X × Y , we have that X × Y is a
Hausdorff space.

�

Theorem 5.17 Let X and Y be regular. Then X × Y is regular.

Proof: Suppose X and Y are regular, and let p = (px, py) ∈ X × Y . Suppose p is
contained in an open set W . Then there exists a basic open set of the form U × V which
contains p and where U ∈ TX and V ∈ TY . Now since X and Y are regular, we can
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use Theorem 5.8 to conclude the existence of open sets U ′ and V ′ such that px ∈ U ′ and
U ′ ⊂ U and py ∈ V ′ while V ′ ⊂ V . Therefore, U ′ × V ′ ⊂ U × V .

Now observe p ∈ U ′× V ′ and that, by Exercise 4.34, U ′ × V ′ = U ′× V ′ ⊂ U × V and
hence is entirely contained in W . Since p and W were arbitrary, this shows that X × Y
satisfies Theorem 5.8, allowing us to conclude that X × Y is a regular space.

�

Presented in class 2/25/19
Theorem 5.19 Every Hausdorff is hereditarily Hausdorff.

Proof: Let Y be a subset of X, and consider the relative topology of Y given by

TY = {V |V = Y ∩U ,U ∈ TX}.

Since X is Hausdorff, we know that for any distinct pair of points p, q ∈ Y , which are
obviously also points in X, there exist disjoint open sets U ′,V ′ ∈ TX such that p ∈ U ′

and q ∈ V ′. Next observe that U ′′ = Y ∩U ′ and V ′′ = Y ∩ V ′ are two disjoint open sets
in TY such that p ∈ U ′′ and q ∈ V ′′. Since p, q were arbitrary points of Y , we have that
Y must also be a Hausdorff space.

�

Theorem 5.20 Every regular space is hereditarily regular.

Proof: Let Y be a subset of X endowed with the relative topology on X. Then consider
C closed in (Y ,T rel

Y ), and a point x ∈ Y such that x /∈ C. From Theorem 4.28, we know
that C is closed if and only if there exists a set D closed in (X,TX) such that C = D∩Y .

Since X is regular, and we know that x /∈ D, then for the set D closed in (X,TX)

there exist disjoint sets U ,V ∈ (X,TX) such that D ⊂ U and x ∈ V . Now observe that
U ′ = U ∩ Y and V ′ = V ∩ Y are disjoint sets open in T rel

Y such that C ⊂ U ′ and x ∈ V ′.
Since C was an arbitrary closed set in (Y ,T rel

Y ) and x was a arbitrary point of Y but
not of C, the topological space (Y ,T rel

Y ) satisfies the properties of being regular so Y is
a regular space.

�

Theorem 5.23 Let A be a closed subset of a normal space X. Then A is normal when
given the relative topology.
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Proof: Let X be a normal space, and consider the relative topology on A:

T rel
A = {U |U = A∩ V where V ∈ TX}

Now consider a pair of disjoint closed sets D, C closed in (A,T rel
A ). Then by Theorem

Figure 1: In this figure, we drew a closed set C completely contained in A and a closed
set D which shares limit points with A in (X,TX).

4.28, we know that there must exist sets D′ and C ′ closed in (X,T) such that C = A∩C ′

and D = A ∩D′. Now observe that since C and D are result of intersecting two sets
which are closed in (X,TX), we must have that C and D are also sets closed in (X,TX).

Now since X is normal and C and D are disjoint and closed in (X,TX), there must
exist disjoint, open sets U and V in (X,TX) such that C ⊂ U and D ⊂ V . Next, let
U ′ = A ∩ U and V ′ = A ∩ V and observe that (1) U ′ and V ′ are disjoint open sets in
(A,T rel

A ) and (2) C ⊂ U ′ and D ⊂ V ′. This is because C ⊂ A, so if C ⊂ U then we are
certain that C ⊂ U ∩A = U ′; an identical argument applies to D. Now since C and D
were arbitrary closed sets of A, we have that A is a normal space when given the relative
topology.

�

Exercise 5.25 Let Y be a subspace of a topological space X, and let A and B be two
disjoint closed subsets of Y in the subspace topology. Show that both A ∩B = ∅ and
A∩B = ∅, where the closures are taken in X.

Solution: If A and B are two disjoint closed sets in the subspace topology, then observe
that no point of one set is a limit point of the other. Thus for every point of a ∈ A, we
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can construct a set Ua ∈ TY such that Ua ∩B = ∅. Similarly, for every point b ∈ B we
can construct a set Ub ∈ TY such that Ub ∩A = ∅.

Let a be a limit point of A in (X,T), and consider an open set U ∈ TX containing a.
Then let U ′ = U ∩ Y , and observe that U ′ ∩B = ∅ because A and B are disjoint closed
sets in (Y ,TY). Thus we see that a cannot be a limit point of B, so that A∩B = ∅, where
the closure is taken in X. We can repeat the same argument for B since the argument is
symmetric, and conclude that A∩B = ∅ as well, giving the desired result.

�

Theorem 5.26 The space X is a completely normal space if and only if X is heredi-
tarily normal.

Proof: Suppose X is completely normal. Let Y be a subset and consider any two
disjoint, closed sets C and D in the subspace topology

TY = {U |U = V ∩ Y : V ∈ TX}.

By Exercise 5.25, these sets are separated in X.
Since C and D are separated in X, there exist two disjoint open sets A, B such that

C ⊂ A, D ⊂ B. Therefore, A∩Y and B ∩Y are two open sets in TY such that C ⊂ A∩Y
and B ∩ Y , which shows that Y is normal. Since Y was an arbitrary subset we have that
X is hereditarily normal.

Suppose now that X is heredetiarily normal, and consider two separated subsets A
and B of X. Denote the subspace A∪B as Y . Then observe that

Y ∩B = (A∪B) ∩B = (A∩B) ∪ (B ∩B) = B.

Thus B is closed in Y , since B is closed in X, and by Theorem 4.28 this implies that
Y ∩B = B is a closed set in the subspace Y . By analogous reasoning, we also have that
A is closed in Y .

Since X is heredetiarily normal, Y is a subspace, and A,B are disjoint closed sets in
Y , we can contain A and B in disjoint open sets U and V in Y . However, we also know
U = U ′capY and V = V ′ ∩ Y for U ′,V ′ ∈ TX .

�
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Theorem 5.29 (The Normality Lemma). Let A and B be subsets of a topological
space X and let {Ui}i∈N and {Vi}i∈N be two collections of open sets such that

1. A ⊂ ⋃
i∈N

Ui

2. B ⊂ ⋃
i∈N

Vi

3. for each i in N, Ui ∩B = ∅ and Vi ∩A = ∅.

Then there exist open sets U and V such that A ⊂ U , B ⊂ V , and U ∩ V = ∅.

Proof: Suppose that (1) and (2) hold, and let

U =
⋃

n∈N

An =
⋃

n∈N

(
Un −

n⋃
i=1

Vi

)

and
V =

⋃
n∈N

Bn =
⋃

n∈N

(
Vn −

n⋃
i=1

Ui

)
.

Note that U and V are open because they each are the countable union of open sets.
This is because each

n⋃
i=1

Ui and
n⋃

i=1
Vi finite unions of closed sets, and hence are closed.

Thus each Un −
n⋃

i=1
Vi and Vn −

n⋃
i=1

Ui are open sets by Theorem 3.15.

Now observe that A ⊂ U , B ⊂ V . We’ll show this is true for A, since the argu-
ment that this is true for B will be identical. Thus let a ∈ A. Then a ∈ Un for
some n ∈ N. However, a /∈ Vi for any i ∈ N, so that a ∈ Un −

n⋃
i=1

Vi. Therefore,

a ∈ ⋃
n∈N

(
Un −

n⋃
i=1

Vi

)
= U , so that A ⊂ U .

Finally, observe that U ∩ V = ∅. If not, then there exists an x ∈ U ∩ V . meaning
that for some m,n ∈N,

x ∈ Un −
n⋃

i=1
Vi

x ∈ Vm −
m⋃

i=1
Ui.

Without loss of generality, suppose n ≤ m. Then by the second equation, we see that
x /∈ Ui for i ≤ m. However, this implies that x /∈ Un since n ≤ m, which contradicts the
first above equation. Thus there cannot be such an x, and U ∩ V = ∅.

�
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Presented sketch 2/27/18
Theorem 5.30 If X is normal and C = ∪i∈NKi is the union of closed sets Ki in X,
then the subspace C is normal.

Proof:

�

Theorem 5.31 Suppose a space X is regular and countable. Then X is normal.

Proof: Consider two sets A and B. Since X is regular, we know by an application of
the definition that for all a ∈ A, there exist open sets {Ua} such that a ∈ Ua which are
each disjoint with B. Similarly, there must exist open sets {Ub} such that b ∈ Ub which
are each disjoint with A.

Now by Theorem 5.8, we know that for each open set Ua containing a, there exists
an open set Va such that a ∈ Va and Va ⊂ Ua. Similarly, for each open set Ub containing
b, there exists an open set Vb such that b ∈ Vb and Vb ⊂ Ub

Observe that A ⊂ ⋃
a∈A

Va, B ⊂
⋃

b∈B
Vb, and that Vb ∩ A = Va ∩ B = ∅ for all a ∈ A

and b ∈ B. Since A,B are at most countable, the sets {Ua}a∈A and {Ub}b∈B are at most
countable.
Thus by the Normality Lemma, we can then conclude there exist open sets U and V such
that A ⊂ U and B ⊂ V while U ∩ V = ∅. Therefore, we can conclude that X is normal,
which is what we set out to show.

�

Presented 2/27/18
Theorem 5.32 Suppose a space X is regular and has a countable basis. Then X is
normal.

Proof: Consider two disjoint subsets A and B of X. Since they are disjoint, we know
that for each a ∈ A, there exists an open set Ua such that Ua ∩B = ∅ for all a ∈ A.
Similarly for each b ∈ B, we know that there exists an open set Ub ∩A = ∅ for all b ∈ B.

Observe that the sets {Ua} and {Ub} may or may not be countable. However, since
we have a countable basis B = {B1,B2, . . . }, we know by Theorem 4.1 that each a ∈ A
is contained in some basis element Bi such that a ∈ Bi ⊂ Ua, where i ∈ N. Thus let
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BA be the set of basis elements such that A ⊂ ⋃
BA∈BA

BA. Similarly, every b ∈ B is
contained in a basis element Bj such that b ∈ Bj ⊂ Ub, where j ∈ N. Now let BB by
the set of basis elements such that B ⊂ ⋃BB∈BB

BB.

Now by Theorem 5.8, for each a ∈ A, there exists an open set Vj(a) such that a ∈ Vj(a)

and Vj(a) ⊂ Bi(a) where j(a) ∈ N and i(a) ∈ N is the index which corresponds to the
set in {B1,B2, . . . } such that a ∈ Bi(a). Similarly for B, we know that for each b ∈ B
there exists an open set Wj(b) such that b ∈ Wj(b) where j ∈N and Wj(b) ⊂ Bi(b) where
i(b) is defined analogously for how we defined i(a).

Finally, observe that A ⊂ ⋃
j∈N Vj , B ⊂

⋃
j∈N Wj , and that Vj ∩ B = Wj ∩ A = ∅

for each j ∈ N. Since these conditions satisfy that the normality lemma, we have that
X is normal, which is what we set out to show.

�
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Chapter 6
Countable Features of Spaces: Size Restrictions

Exercise 6.1 Show that A is dense in X if and ony if every non-empty open set of X
contains a point of A.

Solution: First we prove the forward direction. Suppose that A is a dense subset in X.
Then by definition, A = X. Thus every point of X is a limit point of A, which means
that for every point p ∈ X and every open set U which contains p we see that

(U − {p}) ∩A 6= ∅.

Since this holds for all p ∈ X, we see that every open set in X must contain points in A,
which proves this direction.

X

A ⊂ X

U1 U2 U3 U4 U5 U6

Figure 1:

Here we see the set A is a dense subset in X. The sets U1, . . . U6 denote arbitrary open
sets in X.

Now suppose that every nonempty open set of X contains a point of A. Then this
means that for any p ∈ X, any open set U containing p must also contain a point in A.
By definition, this is a limit point. Since p was an arbitrary point of x, we must have
that every element of X is a limit point of A. Therefore, we must have that A = X,
which finishes the proof in this direction.

�

Exercise 6.2 Show that Rstd is separable. With which of the topologies on R that you
have studied is R not separable?

Solution: Observe that a countable dense subset in Rstd is the set of rationals. This is
because every nonempty open set of R on the standard topology contains points of Q. By
our previous exercise, this allows us to conclude that Q is dense in R. Since the rationals
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are countable, this in total allows us to conclude that Rstd has a countable dense subset,
and is therefore separable by definition.
However, this wouldn’t hold for the discrete topology on R, since it does not have a
countable dense subset with this topology. The countable complement is also not sep-
arable, since every open set in the topology must be uncountable and hence finding a
countable but dense subset of X is impossible.

�

Exercise 6.4 Find a separable space that contains a subspace that is not separable in
the subspace topology.

Solution: Lemma. An uncountable set with the discrete topology is not separable.

Proof. For the sake of contradiction suppose that X is uncountable and is separable
under the discrete topology. Then there exists a countable dense set A such that A = X.
However, since X has the discrete topology, we know that A = A = X; a contradiction
since A is countable while X is uncountable. Thus X is not separable under the discrete
topology.

Now consider a topology on an uncountable set X given by

T = {∅} ∪ {U ⊂ X}p∈X

where p ∈ X. Observe that {p} is dense in this set since every open set in T contains {p}
by construction. Since {p} is countable and dense, X is separable on this topology.

Consider the subspace X − {p}. For any U ⊂ (X − {p}), we see that U ∪ {p} ⊂ T,
so that U is open in X − {p}. Thus every subset of X − {p} is open, which implies that
this is an uncountable discrete space. However, we know that an uncountable discrete
space is not separable, so that X − {p} is not separable.

�

Presented in Class ?
Theorem 6.5 If X and Y are separable spaces, then X × Y is separable.
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Proof: Suppose X or Y are separable spaces. Then there exist countable sets A and
B such that A = X and B = Y . Using the fact that A×B = A×B, we see that

A×B = A×B = X × Y .

Thus A×B is dense in X × Y . But also observe that A×B is countable, since we can
form a bijection between A× B and A or B (namely the projection function). Thus
X × Y must be separable because it contains a countable dense subset, which is what we
set out to show.

X

Y

A

B

A×B

Figure 2: Here in this picture, we see that if A and B are countable dense subsets, then
their product forms a countable dense subset.

�

Theorem 6.6 The space 2R is separable.

Proof: Consider

A =
{
f ∈ 2R :

n⋃
i=1

[pi, qi]|pi, qi ∈ Q

∣∣∣∣∀x ∈ [p, q], f(x) = 1,x /∈ [pi, qi], f(x) = 0}

⋃{
f ∈ 2R :

n⋃
i=1

[pi, qi]|pi, qi ∈ Q

∣∣∣∣∀x ∈ [p, q], f(x) = 0,x /∈ [pi, qi], f(x) = 1}

that is, we only consider intervals [p, q], which have rational endpoints, and finitely union
them. To construct the points f in our set, we assign either a 1 or a 0 to f(x) when x
lies in any of the finite intervals [pi, qi]. (This actually doesn’t have to be done with Q,
but rather any set dense in R.)
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Theorem 2.14 guarantees that this is an at most countable set. Observe that our set
is really a subset of all finite subsets of Q, which itself is a countable set.

Observe that this set is dense in 2R. Consider an open set

U = {f ∈ 2R : f(a1) = δ1, . . . , f(an) = δn}

where δ1, . . . , δn ∈ {0, 1}. Then the point f ∈ 2R such that f(ai) = δi, f(x) = 0 other-
wise, is a point in U . Call this point y.

Since R is normal, there exist disjoint closed neighborhoods [pi, qi] such that ai ∈ [pi, qi]

Then observe that the set
n⋃

i=1
{f ∈ 2R : f(x) = δi if x ∈ [pi, qi], f(x) = 0 otherwise}

is (1) a subset of A and (2) contains y. Therefore, A and U have a nonempty intersetion,
and since U was an arbitrary open set of 2R, we see that A is dense in 2R. Since it is
also countable, we have that 2R is separable, as desired.

�

Theorem 6.9 Let X be a 2nd countable space. Then X is separable.

Proof: Let pi be some point of Bi, i ∈ N, where Bi is a basic open set from our
countable basis. Then for any open set V of X, we know that V will intersect {pi}i∈N

since by definition V must contain some basic open set Bi for which pi ∈ Bi. Thus by
Exercise 6.1, {pi} is dense, and since it’s countable we have that X is separable.

�

Exercise 6.10

1. The space Rstd is 2nd countable (and hence separable).

2. The space RLL is separable but not 2nd countable.

3. The space Hbub is seprarble but not 2nd countable.

Solution:
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1. Consider the open set (a, b). Then observe that ⋃
p∈Q,a≤p

(p,∞)

∩
 ⋃

q∈Q,q≤b

(∞, q)
 = (a, b).

Therefore, we can generate (a, b) by open sets with rational endpoints, which shows
that R has a countable basis. Specifically, the family of open sets {(p, q) : p, q ∈ Q}
forms a countable basis for Rstd, so that by definition Rstd is 2nd countable.

2. By Exercise 6.2, we found that Rstd is separable since the rationals form a countable,
dense subset in Rstd. Thus every set (a, b) contains a rational. However, (a, b) ⊂
[a, b), which which means that every set [a, b) must also intersect the rationals. By
Exercise 6.1, we can then conclude that the rationals are dense in RLL, and since
they are countable this implies that RLL is separable.

3. Observe that the positive rationals Q+ form a dense set of R+ ∪ 0. That is, any
set with (a, b) with a, b ≥ 0 must contain a rational. By Theorem 6.5, we can then
conclude that (Q+)2 is dense in (R+)2, and Q+)2 is clearly countable. Thus by
definition (R+)2 is separable.

However, observe that this is not 2nd countable. Observe that if we are to cover
this space, we need to cover the x-axis. But every point on the x axis needs an
individual sticky bubble to cover it, and since there are an uncountable number
of such x, it would be impossible to cover all of them with a countable number of
sticky bubbles. Therefore this space is not 2nd countable.

�

Theorem 6.11 Every uncountable set in a 2nd countable space has a limit point.

Proof: Suppose we have an uncountable set A in X, and for the sake of contradiction
suppose that U has no limit points. Then every point of A is an isolated point, which
means that there exists an open set U such that U ∩A = {p} for all p ∈ A. Note that
for every such U there exists a B basic open set such that B ⊂ U . Thus p ∈ B ⊂ U .
However, there are only countably many basic open sets, while an uncountable number of
p ∈ A, which is a contradiction since we cannot contain an uncountable number of points
with a countable number of basic open sets. Thus A must have a limit point, which is
what we set out to show.

�

Theorem 6.14 Let X be 2nd countable. Then X is 1st countable.
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Proof: Let X be a 2nd countable space and x ∈ X. Then X has a countable basis B.
Consider the set Bx of all B ∈ B such that x ∈ B. Since B is a basis, we know that for
any open set U containing x there exists a Bx ∈ B such that

p ∈ Bx ⊂ U .

But p ∈ Bx so Bx ∈ Bx. Therefore, Bx is a neighborhood basis of x. However, Bx ⊂ B

so Bx is countable. Therefore, every point of x as countable neighborhood basis so it is
a 1st countable space.

�

Theorem 6.15 If X is a topological space, p ∈ X, and p has a countable neighborhood
basis, then p has a nested countable neighrborhood basis.

Proof: Let B be the countable neighborhood basis for p. Observe that for B ∈ B, (1)
p ∈ B and (2) B is an open set, so by Theorem 3.3 we must be able to contain p in some
neighborhood U such that p ∈ U ⊂ B. By the defintion of a neighborhood basis, there
must exist another B′ ∈ B such that p ∈ B′ ⊂ U . Hence, for every B ∈ B, there exists
an element B′ ∈ B such that

p ∈ B′ ⊂ B.

Since B is countable, we can construct an at most countable set of nested open sets which
form a neighborhood basis of p. Thus p has a nested countable neighborhood basis as
desired.

�

Theorem 6.18 Suppose x is a limit point of the set A in a 1st countable space X.
Then there is a sequence of points {ai}i∈N in A that converges to x.

Proof: Since x is a limit point of A, for every open set U such that x ∈ U we have that
(U − {x}) ∩A 6= ∅. Since x is also a point in a first countable space, it has a countable
neighborhood basis. By Theorem 6.15, x must therefore also have a nested countable
neighborhood basis B.

Since B is countable, we can write B = {B1,B2, . . . }. Let i ∈ N. Now since each
Bi ∈ B must contain some point ai ∈ A, ai 6= x, any open set of x will contain some ai

such that ai ∈ Bi ⊂ U . Thus we must have that {ai}i∈N to be a sequence of points of A
which converges to x.

�
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Chapter 7
Compactness: The Next Best Thing To Being Finite

Theorem 7.1 Let X be a finite topological space. Then X is compact.

Proof: Consider an open cover C of the set X. Since C covers X, we know that for
each p ∈ X there exists an open set Up ∈ C such that p ∈ Up. Since X is finite, there are
finitely many open sets Up ∈ C such that p ∈ Up. Therefore, we see that {Up : p ∈ X} is
a finite subcover of C, which shows that X is compact.

�

Theorem 7.2 Let C be a compact subset of Rstd. Then C has a maximum point,
that is, there is a point m ∈ C such that for every x ∈ C, x ≤ m.

Proof: Let C be an open cover of the set. Then it must have some finite subcover C′.
However, since the basic open sets of R are balls, there must be a finite set of basic open
sets which cover C. However, every open set is of the form (x− ε,x+ ε), where x ∈ C
and ε > 0. Take max x which appears in this finite open cover, and observe that for all
c ∈ C, c ≤ x. Thus C must have a maximum, as desired.

�

Theorem 7.3 If X is a compact space, then every infinite subset of X has a limit
point.

Proof: Consider an infinite subset A of X. Suppose that A has no limit points. Then
for every p ∈ X, there exists an open set Up such that (Up−{p})∩A = ∅. However, this
would imply that ⋃a∈A Ua ⊂ X, so that any open cover would automatically have to be
infinite. But this contradicts the fact that X is compact. Therefore, A must have a limit
point in X.

�

Corollay 7.4 If X is compact and E is a subset of X with no limit point, then E is
finite.
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Proof: Suppose X is compact and a subset E has no limit point in X. Then for every
p ∈ X, we know that there exists an open set Up which contain p, (Up − {p}) ∩E = ∅.
Then again, ⋃p∈E Up ⊂ X. Since every open cover of X must have a finite subcover, we
know that there cannot be an infinite number of open sets Up for p ∈ E, since we could
then never cover it with finitely many open sets. Thus {Up : p ∈ E} has to be restricted
to be finite, so that E must be finite, as desired.

�

Theorem 7.5 A space X is compact if and only if every collection of closed sets with
the finite intersection property has a non-empty intersection.

Proof: Suppose X is compact, and let C be a collection of closed sets with the finite
interscetion property. Suppose that ⋂C∈C C 6= {p} for some p ∈ X; this is a trivial case
of the theorem.
Now let p1 ∈ C1 ∩C2 for C1 6= C2 and C1,C2 ∈ C. We can then construct a sequence of
points pi such that

pi ∈ C1 ∩C2 ∩ · · · ∩Ci ∩Ci+1

where Ci,Ci+1 ∈ C and Ci 6= Ci+1 for all i ∈ N. Since C has the finite intersection
property, we know for a fact that we can always find a pi in the finite intersection.

now if C has an empty intersection, then this implies that this sequence of points
{pi : i ∈ N} converges to a point p which is not contained in any C ∈ C. First of
all, we know it will converge to some point in X by Theorem 7.3. Second of all, observe
that if p is the limit of this sequence, then for every open set U which contains p, there
exists a N ∈N such that for i > N , pi ∈ U . Thus, in other words, if U contains p, then

(U − {p}) ∩Ci 6= ∅

for i ∈N. Thus p is a limit point for each Ci, and since each Ci is closed, p ∈ Ci for all
i ∈N.

Second attempt:
First we’ll prove the forward direction. Suppose that X is a compact space, and let C
be a collection of closed sets in X with the finite intersection property. For the sake
of contradiction, suppose that ⋂C∈C C = ∅. Then observe that {Cc : C ∈ C} (where c

denotes the complement) is an open cover of X. Since this set is an open cover, it must
have a finite subcover, which means that there exist sets Cc1,Cc2 . . . Ccn such that

n⋃
i=1

Cci = X.
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However, taking the complement of this leads to
n⋂
i=1

Ci = ∅

which contradicts the finite interscetion propety of C. Thus we have a contradiction,
which implies that there must exist a ⋂C∈C C 6= ∅ as desired.

Now we prove the other direction. Suppose that for every collection C of closed sets
in X with the finite interesection property, we have that⋂

C∈C
C 6= ∅.

Now let U be an open cover of X. Suppose for the sake of contradiction that this does
not have a finite subcover. Observe that the set {U c : U ∈ U} is a collection of closed
subsets in X with the finite intersection property, since each U c is a closed set which is
not disjoint with any other set. Since we know that every collection of closed sets in X
with the finite interscetion property has a nonempty interesection, we can conclude that⋂

U∈U
U c 6= ∅ =⇒

⋃
U∈U

U 6= X.

However, the last equation contradicts the fact that U was an open cover of X. Thus we
have that every open cover must have a finite subcover, proving that X is compact as
desired, completing the proof.

�

Theorem 7.6 A space X is compact if and only if for any open set U in X and any
collection of closed sets {Kα}α∈λ such that ∩α∈λKα ⊂ U , there exist a finite number of
Kα’s whose interesection lies in U .

Proof: First we’ll prove the forward direction. SupposeX is compact and that ∩α∈λ1Kα ⊂
U for some index λ1. Observe that

U c ⊂
⋃
α∈λ

Kc
α

so that ⋃
α∈λ

Kc ∪U

is an open cover of X. Observe that this must have a finite subcover, so that λ1 can at
least be finite. Thus there can be a finite number of Kα’s, given by {K1,K2, . . . ,Kn}
such that

n⋂
i=1

Ki ⊂ U
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which proves this direction.

Now we’ll prove the other direction. Suppose that for every U ⊂ X and any collec-
tion of closed sets {Kα}α∈λ such that ⋂α∈λKα ⊂ U , there exist a finite number of Kα’s
such that their intersection lies in U .
Now suppose that U = {Uα : α ∈ λ} is an open cover of X. Then observe that the
set {U cα}α∈λ is a collection of closed sets such that ⋂α∈λ U

c
α ⊂ ∅. By assumption, there

must exist a finite number of U cα’s such that their intersection lies in ∅. Call these Uα’s
U c1 ,U c2 , . . . ,U cn. Then

n⋂
i=1

U ci ⊂ ∅ =⇒
n⋂
i=1

U ci = ∅ =⇒
n⋃
i=1

Ui = X

which shows that U must always have a finite subcover. Therefore, the space is compact
as desired.

�

Exercise 7.7 If A and B are compact subsets of X, then A ∪B is compact. Suggest
and prove a generalization.

Solution: Suppose W is an open cover of A∪B. Then observe that W is a cover of both
A and B, and since A and B are compact, there exist finite subcovers of W , denoted
WA and WB, such that A ⊂ WA and B ⊂ WB. Now observe that WA ∪WB is a finite
subcover of W , so that every open cover of A∪B has a finite subcover. Therefore A∪B
is compact, as desired.

This can be extended to finitely many unions of compact sets. Suppose thatA1,A2, . . . ,An
are compact. Then A1 ∪A2 ∪ . . . An is compact. This is because any open cover W of
A1 ∪A2 ∪ . . . An is also an open cover for each A1, . . . ,An, so there are finite subcovers
WAi

such that WAi
covers Ai for i = 1, 2, . . . ,n. Therefore, WA1 ∪ · · · ∪WAn is a finite

subcover of W containing A1 ∪ · · · ∪An, so that A1 ∪ · · · ∪An is compact. However, this
cannot be extended to infinitely many unions of compact sets since unioning infinitely
many finite subcovers will not yield a finite subcover.

�

Theorem 7.8 Let A be a closed subspace of a compact space. Then A is compact.
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Proof: Let X be compact and A a closed subspace of X. Then any closed set in A can
be expressed as D ∩A, where D is closed in X. Since X is comapct, by Theorem 7.5,
any collection of closed sets in X with the finite intersection property has a nonempty
intersection. But closed sets in A are closed sets in X, so that any collection of closed sets
in A with the finite intersection property have a nonempty interesection, which proves
that A is a compact set. Therefore, A is compact.

�

Theorem 7.9 Let A be a compact subspace of a Hausdorff space X. Then A is closed.

Proof: Let q ∈ X −A. Since X is Hausdorff, for any p ∈ A, there exist disjoint open
sets Up and Vp such that p ∈ Up and q ∈ Vq. Now observe that the set {Up|p ∈ A} is an
open cover of A, where each member corresponds to a disjoint open set Vp of the point
q. Since A is a compact set, we know that the set must have a finite subcover; denote
it as {Up1 ,Up2 , . . . ,Upn}. Then the set ⋂ni=1 Vpi is a an open set containing q, (open
because the interesection is finite) which is disjoint from A. Since this must hold for all
q ∈ X −A, this shows that X −A is an open set. Therefore, A is closed, as desired.

�

Exercise 7.10 Construct an example of a compact subset of a topological space that
is not closed.

Solution: On the discrete topology, an finite set is an open set, although as we saw from
Theorem 7.1 any finite set is also a compact set.

�

Exercise 7.11 Must the intersection of two compact sets be compact? Add hypothesis,
if necessary. Extend any theorems you discover, if possible.

Theorem 7.12 Every compact, Hausdorff space is normal.
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Proof: First we can show that X is regular. Suppose A is closed and consider any
p /∈ A. Then observe that, since X is Hausdorff, for each a ∈ A, there are disjoint open
sets Ua and Va such that a ∈ Ua and p ∈ Ua. Then

U = {Ua : a ∈ A}

is an open cover of A, and since A is closed Theorem 7.8 guarantees that A is compact,
and therefore there is a finite subcover

U ′ = {Ua : a ∈ F}

where F is a finite subset of A. Therefore, the set V =
⋂
a∈F Va is an open set containing

p but is entirely disjoint from all sets in U ′ by construction. Since A and p /∈ A were
arbitrary, and we contained them in disjoint open sets, then we have that X is regular.

Now let A be closed and U be an open set containing A. Then note that for each a ∈ A
that a ∈ Ba ⊂ U where Ba is some basic open set. Thus {Ba : a ∈ A} is an open cover
of A. By compactness of A, there must exist a finite subcover, given by {Ba : a ∈ F}
where F is a finite subset of A.

By regularity, we know that for each a ∈ Ba there exists an open set Va such that
a ∈ Va and Va ⊂ Ba. Therefore, we see that V =

⋂
a∈F

Va is an open set containing A and

V ⊂
⋂
a∈F

Va ⊂ U .

Thus we have contained A in an open set V such that A ⊂ V and V ⊂ A. By Theorem
5.9, we can conclude that X is normal, as desired.

�

Theorem 7.13 Let B be a basis for a space X. Then X is compact if and only if
every cover of X by basic open sets in B has a finite subcover.

Proof: Suppose that X is compact and has a basis B. Suppose that we cover X by
basic open sets Bα∈λ such that Bα ∈ B for all α ∈ λ. Then because X is compact, there
exsits a finite subcover, which we can express as {Bα : α ∈ λ′} where λ′ is a countable
index. Thus we see that every cover of X by basic open sets in B has a finite subcover.

Now we prove the other direction. Suppose that every cover of X by basic open sets
in B has a finite subcover. First observe that for any open cover U = {Uα : α ∈ λ}, each
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Uα can be expressed as the union of basis elements {Bγ(α) : γ ∈ λ′}. If U covers X, then
the set of basic elements {Bγ : γ ∈ λ} will still contain X. But since every cover of X by
basic open sets in the basis have a finite subcover, there exists a finite set which covers
X which we can denote as {Bα : α ∈ λ′′}, where λ′′ is a finite index. Hence U has a finite
subcover, which implies that X is a compact space.

�

Theorem 7.18 (The tube lemma) Let X × Y be a product space with Y compact. If
U is an open set of X × Y containing the set x0× Y , then there is some open set W in
X containing x0 such that U contains W × Y (called a "tube" around x0 × Y ).

Proof: Let U be an open set in X × Y containing x0 × Y . Suppose for each y ∈ Y we
contain y in a set Uy and consider the product Ux(y)×Uy, where Ux(y)×Uy ⊂ U . Then
since Y is compact, there exists a finite subcover of {Uy|y ∈ Y }. Suppose this is given
by {Uy1 , . . . ,Uyn}. Then observe that

x0 ⊂
(

n⋂
i=1

Ux(yi)

)
×
(

n⋃
i=1

Uyn

)
=

(
n⋂
i=1

Ux(yi)

)
× Y ⊂ U × Y

so that W =
⋂n
i=1 Ux(yi) is an open set in X such that W × Y ⊂ U , as desired.

�

Theorem 7.19 Let X and Y be compact spaces. Then X × Y is compact.

Proof:

�

Heine-Borel Theorem 7.20 Let A be a subset of Rn with the standard topology.
Then A is compact if and only if A is closed and bounded.

Proof: Let A ⊂ R and suppose A is compact. Since A ⊂ Rn, we now that it must be
the product of compact sets Ai ∈ R, i = 1, 2, . . . n. By Theorem 7.15, each such Ai must
be closed and bounded. Hence their product, A, must also be closed and bounded, which
proves this direction.

Now suppose A is closed and bounded. Then A must be a product of closed, bounded
sets [ai, bi] where ai ≤ bi and i = 1, 2, . . . ,n. However, by Theorem 7.14, each such
set is compact, and by Theorem 7.19 their product must also be compact. Hence, A is
compact, which proves the theorem.
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�

Alexander Subbasis Theorem 7.21 Let S be a subbasis for a space X. Then X is
cmpact if and only if every subbasic open cover has a finite subcover.

Proof:

�

Tychonoff’s Theorem 7.22 Any product of compacts sets is compact.

Proof:

�
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Chapter 8
Continuity: When Nearby Points Stay Together

Theorem 8.1 Let X and Y be topological spaces and let f : X → Y be a function. Then
the following are equivalent:

(a) The function f is continuous.

(b) For every closed set K in Y , the inverse image f−1(K) is closed in X.

(c) For every limit point p of a set A in X, the image f(p) belongs to f(A).

(d) For every x ∈ X and open set V containing f(x), there is an open set U containing
x such that f(U) ⊂ V .

Proof:

• (1 ⇐⇒ 2). Observe firstly that we can write f−1(K) = X − f−1(Y −K). This
is because every x ∈ f−1(Y −K) will be mapped to Y −K. Hence every x ∈ X −
f−1(Y −K) will be mapped to K. Now observe that since K is closed (open), Y −K
is open (closed), so that f−1(Y −K) is an open (a closed) set in X. Therefore, we see
that X − f−1(Y −K) = f−1(K) is a closed (open) set, as desired.

Y
X

f−1(K)
K

Figure 1: Note: f−1 may or may not be a function from Y → X! This picture just
demonstrates that for every closed K ∈ Y , f−1(K) is closed in X.

• (1 =⇒ 3) Suppose for the sake of contradiction that f(p) is an isolated point. Then
there exists an open set U of Y such that f(p) ∈ U but U ∩ f(A) = ∅. Now observe
that f−1(U) is open in X, and p ∈ V . But since p is a limit point of A, we know
that f−1(U) must contain some q 6= p and q ∈ A. However, this would imply that
f(q) ∈ U , which is a contradiction since we assumed that U ∩ f(A) = ∅. Thus we see
that f(p) ∈ f(A).

• (3 =⇒ 1) To prove the other direction, suppose that U is open in Y . Then let
U = Y − f(A) for some set A ∈ X. Now by (3), we know that f(A) = f(A). Hence

f−1(U) = f−1(Y − f(A)) = f−1(Y − f(A))
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Y
X

f

p

A
f(A)

f(p)

Figure 2: Here the limit point p of A maps to a limit point of f(A).

maps to X −A, which is an open set. Thus for every open set U ⊂ Y , we have that
f−1(U) is open so that f is continuous.

• (1 =⇒ 4) Suppose that f(x) is contained in some open V ⊂ Y where x ∈ X. By
definition of an open set, there must exist some U open in Y such that f(x) ∈ U ⊂ V .
Now observe that, by continuity, f−1(U) is some open set in X such that x ∈ f−1(U)
and f(f−1(U)) = U ⊂ V . Thus there will always exist an open W ∈ X such that
x ∈ W and f(W ) ⊂ V , as desired.

Y
X

x

U
V

f(x)

f(U)

Figure 3: In this diagram we see that a neighborhood V of f(x) corresponds to some open
set U of x such that f(U) ⊂ V .

• (4 =⇒ 1) Consider an arbitrary open set V . By (4), we know that for each f(x) ∈ V ,
there exists a U open in X such that f(U) ⊂ V . Thus consider every x ∈ X such that
f(x) ∈ V , and let Ux be the open set in X such that f(Ux) ⊂ V . Then observe that⋃

x∈X s.t. f(x)∈V
Ux = f−1(V ).

This is because for any x ∈ ⋃
x∈X s.t. f(x)∈V

Ux, we know that f(x) /∈ Y − f(V ) and for

any y ∈ f(V ), there exists a x ∈ ⋃
x∈X s.t. f(x)∈V

Ux such that f(x) = y by construction.

Page 2



Math 147 Topology Section 8 Spring 2019

Since the arbitrary union of open sets is open, we thus see that f−1(V ) is an open set.
Since V was an arbitrary open set, this proves that f is continuous by definition.

�

Theorem 8.2 Let X, Y be topological spaces and y0 ∈ Y . The constant map f : X → Y
defined by f(x) = y0 is continuous.

Proof: We can use the fourth property of continuity to prove this assertion. Observe that
if V is any open set containing y0, then f−1(V ) = X because f(X) = y0, as f is the constant
map. If V is an open set not containing y0, then f−1(V ) = ∅. Since X, ∅ are open, we have
that the inverses of open sets in Y are open sets in X. Therefore, f is a continuous mapping.

�

Theorem 8.3 Let X ⊂ Y be topological spaces. The inclusion map i : X → Y defined
by i(x) = x is continuous.

Proof: Observe that since if U is open in X ⊂ Y , then i−1(U) = U is open in X. Thus
by the definition of continuity, we see that i(x) is a continuous mapping.

�

Theorem 8.4 Let f : X → Y be a continuous map between topological spaces, and let
A be a subset of X. Then the restriction map f |A : A → Y defined by f |A(a) = f(a) is
continuous.

Proof: Consider a ∈ A ⊂ X and an open set V containing f(a). Then there is an open
set U of X containing a such that f(U) ⊂ V . Now observe that in the subspace topology,
A ∩ U is an open set in A. Furthermore, f(A ∩ U) ⊂ V , since A ∩ U ⊂ U . Therefore, we
see that for every a ∈ A and open set V containing f(a), there is an open set A ∩ U of A
containing a such that f(A∩U) ⊂ V , so that f |A : A→ Y is a continuous mapping.

�

Theorem 8.5 A function f : Rstd → Rstd is continuous if and only if for every x ∈ R and
ε > 0, there is a δ > 0 such that for every y ∈ R with d(x, y) < δ, then d(f(x), f(y)) < ε.
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Proof: First we’ll prove the forward direction. Suppose that f is a continuous function
from Rstd → Rstd. By using the fourth property of continuous functions, we know that for
every x ∈ R and open set V containing f(x), there is an open set U containing x such that
f(U) ⊂ V .

Since the basis for Rstd consists of balls, we can let V = B(f(x), ε). Now we can take
U to be a ball B(x, δ) such that for every y ∈ B(x, δ) we have that f(y) ∈ B(f(x, ε)). In
terms of the metric space, this means that the continuity of f implies that for every ε > 0,
there must be a δ > 0 such that d(x, y) < δ =⇒ d(f(x), f(y)) < ε, which is the calculus
definition of continuity.

Now we prove the other direction. Observe that if the calculus definition of continuity
is given, then we can see that the freedom granted to ε > 0 allows d(f(x), y) < ε to specify
any arbitrary neighborhood V in R which contains f(x), where x ∈ R. Now the fact that we
know there exists a δ > 0 such that d(x, y) < δ =⇒ d(f(x), f(y)) < ε implies the existence
of an open set U containing x such that f(U) ⊂ V . This is exactly the fourth property
of continuity offered in Theorem 8.1, which allows us to conclude that f is a continuous
mapping, as desired.

�

Q (3/13/19): Is first countability necessary for the forward direction?
Theorem 8.6 Let X be a 1st countable space and Y a topological space. Then a function
f : X → Y is continuous if and only if for each convergent sequence xn → x in X, f(xn)
converges to f(x) in Y .

Proof: First we prove the forward direction. Suppose that f is a continuous mapping, X
is 1st countable, and there is a sequence in X such that xn → x.

Consider an open set V in Y such that f(x) ∈ V . Since f is continuous, U = f−1(V )
is an open set in X. Therefore there exists some N ∈ N such that for i > N , xi ∈ U .
Applying f to this last equation implies that f(xi) ∈ f(U) = f(f−1(V )) = V . Thus by
definition, f(xi) is a sequence which converges to f(x) in Y .

Next we prove the other direction. Suppose xn → x and f(xn) → f(x). For the sake
of contradiction, suppose f is not continuous. By property (3) of Theorem 8.1, for some
A ⊂ X there exists a p ∈ A such that f(p) /∈ f(A).

Since f is first countable, we know by Theorem 6.18 that there exists a sequence {ai}i∈N

of points in A such that ai → p. Since ai are points of A, we know that f(ai) ∈ f(A) for
all i ∈ N. However, we also know that f(p) /∈ f(A), so that it could not be the case that
f(ai) → f(p). However, this is a contradiction, namely to our assumption. Therefore we
must have that f is continuous.

�
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Theorem 8.7 Let X by a space with a dense set D, and let Y be Hausdorff. Let
f : X → Y and g : X → Y be continuous functions such that for every d ∈ D, f(d) = g(d).
Then for all x ∈ X, f(x) = g(x).

Proof: Suppose that f(x) 6= g(x) for some x /∈ D. Since the points are distinct, and
since Y is Hausdorff, there must exist disjoint open sets U ,V in Y such that f(x) ∈ U and
g(x) ∈ V . Since both f , g are continuous, there must exist open sets U ′,V ′ in X such that
f(U ′) ⊂ U and g(V ′) ⊂ V . However, since D is dense in X, both U ′ and V ′ must intersect
with some portion of D; that is, there is some y ∈ U ′ and z ∈ V ′ such that y, z ∈ D.
Therefore, we see that f(y) ∈ U and g(z) ∈ V . But we know that by definition of the
function, f(y) = g(z), which contradicts the fact that U ∩ V = ∅. Therefore, we have a
contradiction and it must be the case that f(x) = g(x) for all x ∈ X, as desired.

�

Theorem 8.9 If f : X → Y and g : Y → Z are continuous then their composition
g ◦ f : X → Z.

Proof: Consider an open set V in Z. Since g is continuous, we know that g−1(V ) is
open in Y . Since f is continuous, we also know that f−1(g−1(V )) is open in X. That is
(g ◦ f)−1(V ) is open in X. Thus by definition g ◦ f is a continuous mapping.

�

Presented in class on 3/13/19

Theorem 8.10 (pasting lemma) Let X = A ∪ B. where A,B are closed in X. Let
f : A→ Y and g : B → Y be continuous funtions that agree on A∩B. Then the function
h : A∪B → Y such that h = f on A and h = g on B is continuous.

Proof: Consider K closed in Y . Then observe that h−1(K) = f−1(K) ∪ g−1(K) is a
union of closed sets in A∪B. Thus the union is itself closed, so that for every K closed in
Y we have that h−1(K) is closed in A∪B, proving continuity.

�

Presented in class on 3/13/19
Theorem 8.11 (pasting lemma) Let X = A ∪ B. where A,B are open in X. Let
f : A→ Y and g : B → Y be continuous funtions that agree on A∩B. Then the function
h : A∪B → Y such that h = f on A and h = g on B is continuous.

Proof: Consider K open in Y . Then observe that h−1(K) = f−1(K)∪ g−1(K) is a union
of open sets in A∪B. Thus the union is itself open, so that for every K open in Y we have
that h−1(K) is open in A∪B, proving continuity.

�
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Exercise 8.12 Exercise 8.12 Is the pasting lemma true when A and B in the preceeding
theorems are arbitrary sets?

Solution: The answer is no, since A ∩B may turn out to be neither an open or closed set.
Based on the definition h : A∪B → Y , it is possible that h would experience a discontinuity
in transitioning from A to A∩B or B to A∩B.

�

Theorem 8.13 Let f : X → Y be a function and B a basis for Y . Then f is continuous
if and only if for every open set B in B, f−1(B) is open in X.

Proof: First we’ll prove the forward direction. Suppose f is continuous. If B = {Bα : α ∈
λ} is a basis for Y , then observe that for every α ∈ λ, f−1(Bα) is an open set in X by the
continuity of f , which proves this direction.

Next we prove the other direction. Suppose B is a basis for Y and for every B ∈ B,
f−1(B) is open in X. Then if V is open in Y , observe that

f−1(V ) = f−1(
⋃
α∈λ

Bα) =
⋃
α∈λ

f−1(Bα)

Since f−1(V ) is a union of open sets in X, we have that f−1(V ) is open in X. Since this
holds for all V open in Y , we have that f is continuous.

�

Theorem 8.14 Let f : X → Y be a function and B a subbasis for Y . Then f is continuous
if and only if for every open set B in B, f−1(B) is open in X.

Proof: First we’ll prove the forward direction. Suppose f is continuous. If B = {Bα : α ∈
λ} is a basis for Y , then observe that for every α ∈ λ, f−1(Bα) is an open set in X by the
continuity of f , which proves this direction.

Next we prove the other direction. Let x ∈ X and suppose V is an open set in Y con-
taining f(x). Since B is a subbasis for Y , there must exists a finite set {Bi}ni=1 ⊂ B such
that

n⋂
i=1

Bi ⊂ V . Therefore,

f−1(V ) ⊃ f−1(
n⋂
i=1

Bi) =
n⋂
i=1

f−1(Bi) = U .

where we have denoted U =
n⋂
i=1

f−1(Bi). Since this is a finite intersection of open sets, each

which contain x, we have that U ⊂ f−1(V ). By property (3) of Theorem 8.1, we have that
f is continuous as desired.
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�

Theorem 8.15 If X is compact and f : X → Y is continuous and surjective, then Y is
compact.

Proof: Consider an open cover U = {Uα : α ∈ λ} of Y . Since f is continuous, f−1(Uα)
is open in X for all α ∈ λ. Since Y is closed in Y , f−1(Y ) is a closed subspace in X. By
theorem 7.8, f−1(Y ) is therefore compact. Since {f−1(Uα) : α ∈ λ} is an open cover of
f−1(Y ) there exists a finite subcover, denoted as {f−1(U1), . . . , f−1(Un)}.

Since

f−1(Y ) ⊂
n⋃
i=1

f−1(Un) =⇒ Y ⊂ f(
n⋃
i=1

f−1(Un)) =
n⋃
i=1

f(f−1(Un)) =
n⋃
i=1

Un.

Thus we have that {U1, . . . ,Un} is a finite subcover of U. Since U was an arbitrary open
cover, this proves that Y is compact.

YY
X

YY
X

f

Figure 4: In the first diagram we start with an arbitrary cover of Y , and take the inverse
open images in X. In the second diagram, we identify finite subcover, which exists since X
is compact, and send this back into Y to obtain a finite subcover of Y .

�

Theorem 8.18 Let D be a dense subset of a topological space X and let f : X → Y be
continuous and surjective. Then f(D) is dense in Y .
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Proof: Since f is surjective, we have that f(X) = Y . Now observe that

f(D) = f(D) = f(X) = Y

by property (3) of Theorem 8.1. Thus we have that f(D) is dense in Y as desired.

�

Corollary 8.19 Let X be as separable space and let f : X → Y be continuous and
surjective. Then Y is separable.

Proof: Since X is separable there exists a countable dense set A in X. Now observe that
(1) f(A) is at most countable since f is surjective and (2) f(A) is also dense in Y by Theorem
8.18. Thus Y also has a countable dense subset so Y is separable.

�

Exercise 8.20

1. Find an open function that is not continuous.

2. Find a closed function that is not continuous.

3. Find a continuous function that is neither open nor closed.

4. Find a continuous function that is open but not closed.

5. Find a continuous function that is closed but not open.

Presented in class 3/25/19
Theorem 8.21 If X is normal and f : X → Y is continuous, surjective, and closed, then
Y is normal.

Proof: Consider two disjoint closed sets A and B in Y . By continuity, f−1(A) and f−1(B)
must be closed sets in X. As they are disjoint, and because X is normal, there must exist
disjoint open sets U and V such that f−1(A) ⊂ U and f−1(B) ⊂ V .

Observe that U c,V c are closed sets in X. By closedness of f , we know that f(U c), f(V c)
are closed sets in Y . Thus f(U c)c = f(U) and f(V c)c = f(V ) are both open sets. Since
A ⊂ f(U) and B ⊂ f(V ), and f(U) and f(V ) are disjoint as U ,V are disjoint, we have
that Y must be normal as desired.

�

Theorem 8.22 If {Bα : α ∈ λ} is a basis for X and f : X → Y is continuous, surjective
and open, then {f(Bα)}α∈λ is a basis for Y .
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Proof: Suppose V is an open set in Y and f(x) ⊂ V where x ∈ X. By continuity, there
exists an open set U ⊂ X such that f(U) ⊂ V . As {Bα : α ∈ λ} is a basis for X, there ex-
ists a B ∈ {Bα : α ∈ λ} such that x ∈ B ⊂ U by Theorem 4.1. Therefore, f(x) ∈ f(B) ⊂ V .

Thus observe that

(a) {f(Bα)α∈λ} ⊂ TY since by openness of f each f(Bα) is open in Y for all α ∈ λ and

(b) for each open V in Y where f(x) ∈ V , there exists a B ∈ {Bα : α ∈ λ} such that

f(x) ∈ f(B) ⊂ V .

As this satisfies Theorem 4.1, we have that {f(Bα)}α∈λ is a basis for Y .

�

Theorem 8.24 Let X be compact and Y be Hausdorff. Then any continuous function
f : X → Y is closed.

Proof: Let A be a closed in X and consider y ∈ Y − f(A). Let {Uα}α∈λ be an open cover
of f(A) where λ is an arbitrary index.

By continuity, we know that each f−1(Uα) is open so

{f−1(Uα)}α∈λ

is an open cover of A in X. By Theorem 7.8, we know that A must be compact since it
is a closed subspace of X, which is compact. Therefore, there exists a finite subcover of
{f−1(Uα)}α∈λ, which we can denote as

{f−1(Uα1), . . . , f−1(Uαn)}.

Thus we know that {Uα1 , . . . ,Uαn}. is an open cover of f(A). Since every open cover of
f(A) has a finite subcover, we can conclude that f(A) is compact. By Theorem 7.9, we
have that f(A) is closed since f(A) is a compact subspace of Y which is a Hausdorff space.
Therefore, f is a closed function.

�

Theorem 8.25 Being homeomorphic is an equivalence relation on topological spaces.
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Proof: Let X ∼ Y if X is homeomorphic to Y .

Reflexive: Observe that X ∼ X since the identity function f is a continuous bijective
function with a continuous inverse. Thus ∼ is reflexive.

Symmetric: If X ∼ Y , there exsits a continuous bijective function f : X → Y with a
continuous inverse. Observe that f−1 : Y → X is also a continuous bijective function with
a continuous inverse, so that X ∼ Y =⇒ Y ∼ X. Thus ∼ is symmetric.

Transitive: If X ∼ Y and Y ∼ Z, where f : X → Y and g : Y → Z are continuous
bijective functions with continuous inverses, then obseve that g ◦ f is a continous bijective
function (we proved earlier that compositions of continuous functions are continuious, and
bijectivity is immediate) and that (g ◦ f)−1 is a also continuous since the inverses f−1 and
g−1 are both continuous. Since g ◦ f : X → Z, we see that X ∼ Y and Y ∼ Z implies that
X ∼ Z. Thus ∼ is transitive

Since ∼ is reflexive, symmetric and transitive, we have that ∼ is an equivalence realtion
as desired.

�

Presented in class on 3/25/19
Theorem 8.28 If f : X → Y is continuous, then the following are equivalent.

(a) f is a homeomorphism

(b) f is a closed bijection

(c) f is an open bijection.

Proof:
• (a =⇒ b, c) Suppose f is a homeomorphism. Since f is continuous, we know for

every closed (open) set K ⊂ Y that f−1(K) is closed (open) in X. However, since
f−1 is continuous, f(f−1(K)) = K is closed (open) in X. Since f is bijective, we thus
have that every closed (open) set is uniquely mapped to another closed (open) set, and
hence f is a closed (open) bijection.

• (b, c =⇒ a) Suppose that f is a closed (open) bijection. Then every closed (open)
set in X is mapped uniquely to a closed (open) set in Y by bijectivity. Thus f−1 is
continuous. However, for every closed (open) set in K in Y , f−1(K) is closed (open)
in X. Thus f is continous. Since f is continous, bijective and f−1 is continuous, we
have that f is a homeomorphism.

�

Theorem 8.29 Suppose f : X → Y is a continuous bijection where X is compact and Y
is Hausdorff. Then f is a homeomorphism.
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Proof: Observe that we can apply Theorem 8.24 here, since f is continuous from X,
a compact space, to Y , a Hausdorff space, to conclude that f is closed. Now since f is
a continuous, closed bijection, we have by Theorem 8.28 that f is a homeomorphism, as
desired.

�

Theorem 8.29 Let X be a compact space and let Y be Hausdorff. If f : X → Y is a
continuous, injective map, then f is an embedding.

Proof: Observe it is given that f is injective while it is surjective, and hence bijective, into
f(X). Thus by Theorem 8.29 f is a homeomorphism from X to f(X) since X is compact
and f(X) is Hausdorff. Therefore, f is an embedding.

�

Theorem 8.32 Let X and Y be topological spaces. The projection maps πx, πy, on
X × Y are continuous, surjective, and open.

Proof: First observe that for every x ∈ X, (x, y) ∈ X × Y where y ∈ Y so that
πx(x, y) = x. Therefore the function is surjective.

Now observe that it is continuous. Let U be open in X. Observe that

U × Y ⊂ X × Y and U × Y = π−1
x (U).

Since U ,Y are open, U × Y is an open set in the product topology and hence π−1
x (U) is

open. Thus πx is continuous. Also, since πx(U × Y ) = U and U is open in X, we see that
open sets in X × Y map to open sets in X, so that πx is also an open function.

The proof that πy is continuous, surjective and open is the exact same.

�

Q: Does the box topology behave similarly?
Theorem 8.33 Let X and Y be topological spaces. The product topology X × Y is the
coarsest topology on X × Y that makes the projection maps πx, πy on X × Y continuous.

Proof: Observe that the product topology is generated by the subbasis of inverse images
of open sets under the projection functions. Therefore, if we tried deleting any set from the
product topology, there would exist an open set in X or Y such that its inverse image under
the projection function is no longer open. Since we cannot remove any elements without
making the projection functions discontinuous, we have that the product topology is the
coarsest topology on X × Y that makes the projection functions continuus.
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�

Presented on 3/27/19
Theorem 8.35 Let X and Y be topological spaces. For every y ∈ Y , the subspace
X × {y} of X × Y is homeomorphic to X.

Proof: Consider the function π′x : X × {y} → X, where π′x(x, y) = x. I claim that this is
a bijection, since for any x0 ∈ X, (x0, y) ∈ X × {y} so π′x(x0, y) = x0. Thus the function is
surjective. Now suppose π′x(x1, y) = π′x(x2, y). Then x1 = x2, so the function is injective.
Therefore it is bijective.

Let U be open in X. Then observe that (1) U × {y} is open in the subspace X × {y}
and (2) π′x(U × {y}) = U . Therefore, π′x is an open function.

Since π′x is an open bijection, Theorem 8.28 guarantees that this is a homeomorphism.
Therefore, we see that X × {y} is homeomorphic to X as desired.

�

Theorem 8.36 Let X,Y and Z be topological spaces. A function g : Z → X × Y is
continuous if and only if πx ◦ g and πy ◦ g are both continuous.

Proof: First we’ll prove the forward direction. Suppose g : Z → X × Y is continuous.
Observe that πx ◦ g and πy ◦ g are both compositions of continuous functions (By Theorem
8.32, πx and πy are continuous functions) so πx ◦ g and πy ◦ g must be both continuous.

Now we prove the other direction. Suppose that πx ◦ g and πy ◦ g are both continuous.
Consider an open set U in X × Y . Since πx and πy are open functions by Theorem 8.32, we
see that πx(U) = Ux is open in X and πy(U) = Uy is open in Y .

Now since πx ◦ g : Z → X and πy ◦ g : Z → Y are both continuous, (πx ◦ g)−1(Ux)
and (πy ◦ g)−1(Uy) are both open functions in Z. Furthermore, if U = Ux × Uy, then we
can rewrite this as

U = π−1
x (Ux) ∩ π−1

y (Uy) = (Ux × Y ) ∩ (X ∩Uy).

Thus

g−1(U) = g−1(π−1
x (Ux) ∩ π−1

y (Uy)) = g−1(π−1
x (Ux)) ∩ g−1(π−1

y (Uy))

= (πx ◦ g)−1(Ux) ∩ (πy ◦ g)−1(Uy)

which is the intersection of two open sets, by the continuity of πx ◦ g and πy ◦ g. Since U
was an arbitrary set and g−1(U) is open in Z, we have that g is a continuous function.
Use the fact that subbasis of inverse images of open sets in X and Y generate open sets in
X × Y .
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�

Theorem 8.38 Let ∏
α∈λ

Xα be the product of topological spaces {Xα}α∈λ. The projection
map πβ :

∏
α∈λ

Xα → Xβ is a continuous, sujective, and open map.

Proof: Observe that we can show continuity as follows. If U is open in Xβ, then observe
that f−1(U) =

∏
α∈λ\{β}

×U is a basic open set.

Next surjectivity follows from the fact that

πβ

∏
α∈λ

Xα

 = Xβ.

Finally, we see that for any basic open set, Xβ can be restricted is an open set U ⊂ Xβ. In

this case, we see that πβ
( ∏
α∈λ

Xα

)
= U which is open in Xβ. In the other case, Xβ can be

unrestricted, in which case πβ
( ∏
α∈λ

Xα

)
= Xβ. which is also an open set in Xβ. Thus we

see that πβ maps open sets in the product space to open sets in Xβ, so it is an open function.
Thus πβ is continuous, surjective and open.

�

Theorem 8.39 The product topology is the coarsest (smallest) topology on ∏
α∈λXα

that makes each projection map continious.

Proof: Observe that we can genereate the coarsest topology by generating a topology T

such that π−1
β (Uβ) is open for all β ∈ λ. Then finite intersections and arbitrary unions of

these sets are open.

However, from Exercise 4.35 we found that the product topology is the topology gener-
ated by the subbasis of inverse images of open sets of the projection functions. Thus these
topologies are equivalent, so that the product topology is the coarsest topology that keeps
each projection map open.

�

Theorem 8.40 Let ∏
α∈λ

Xα be the product of topological spaces {Xα}α∈λ and let Z be
a topological space. A function g : Z → ∏

α∈λ
Xα is continuous if and only if πβ ◦ g is

continuous for each β ∈ λ.

Page 13



Math 147 Topology Section 8 Spring 2019

Proof: Suppose g : Z → ∏
α∈λ

Xα is continuous. Then observe that πβ ◦ g is a composition
of continuous functions for all β ∈ λ, which proves this direction.

Now suppose that πβ ◦ g is continuous for all β ∈ λ. Let U be open in ∏
α∈λ

Xα. Observe that
we can write U as

U =
n⋂
i=1

π−1
βi

(Uβi) Uβ ∈ TXβi
, βi ∈ λ.

Thus observe that

g−1(U) = g−1
(

n⋂
i=1

π−1
βi

(Uβi)

)
=

n⋂
i=1

g−1(π−1
β (Uβi)) =

n⋂
i=1

(π ◦ g)−1(Uβi)

and since π ◦ β is continuous we know that (π ◦ g)−1(Uβi) is open for all β ∈ λ. Therefore⋂n
i=1(π ◦ g)−1(Uβi) is a finite intersection of open sets, which is finite. Hence g−1(U) is open,

proving that g is continuous, which completes the proof.

�

Theorem 8.41 Let Rω be the countably infinite product of R with itself. Let R→ Rω be
defined by f(x) := (x,x,x, . . . ). Then f is continuous if Rω is given the product topology,
but not if given the box topology.

Proof: Consider x ∈ R and an open set V in Rω containing f(x). Let B be the basic
open set such that

f(x) ∈ B ⊂ V .
Now B =

∏
α∈λ Uα where Uα are open in R and Uα = R except for a finite number of

α ∈ λ′ ⊂ λ. Since f(x) = (x,x,x, . . . ) ∈ B, we know that

x ∈ Uα, α ∈ λ′.

The fact that x ∈ Uα where α ∈ λ− λ′ is obvious, since Uα = R for α ∈ λ− λ′. Therefore,

x ∈
⋂
α∈λ′

Uα

and because this is a finite interection, U =
⋂
α∈λ′

Uα is open in R. Since

x ∈ U f(U) ⊂ B ⊂ V ,

we have that f : R→ Rω is a continuous function as x was an arbitrary member of R.

Next suppose Rω is endowed with the box topology. Construct an open set V in Rω con-
taining f(x) = (x,x,x, . . . ) as follows. Let

Vn =
(
x− 1

n
,x+ 1

n

)
n ∈N
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so that V =
∏
n∈N

Vn. Observe that (1) f(x) ∈ V and (2) there is no open set U ⊂ R such

that f(U) ⊂ V because

⋂
n∈N

Vn =
⋂
n∈N

(
x− 1

n
,x+ 1

n

)
= {x}.

Therefore, we see that f is not continuous under the box topology.
Q: What functions are continuous under the box topology, but not the product topology?
Or are all functions which are continuous under the box topology continuous for the product
topology? Also, what happens when ω becomes uncountable? I think it would still work...

�

Theorem 8.42 The cantor set is homeomorphic to the product ∏n∈N{0, 1} where {0, 1}
has the discrete topology.

Proof: Consider c ∈ C, the Cantor set, and let Cn be the cantor ternary sets such that

Cn =
Cn−1

3 +
(2

3 +
Cn−1

3

)
C0 = [0, 1].

and C = ⋂
n=1

Cn. Let us define f : C → ∏
n∈N{0, 1} as follows:

f(c) = (i1(c), i2(c), . . . )

where

in(c) =


1 if c ∈ Cn
0 if c ∈

(2
3 +

Cn
3

) n ≥ 1.

Now we will demonstrate continuity. Let U be a basis element of ∏n∈N = {0, 1}. Then
U =

∏
α∈λ Uα{0, 1} and U = {0, 1} for all but a finite number of α ∈ λ′ ⊂ λ. For each

α ∈ λ′, Uα = i(α) where i(α) = 1 or 0. Thus consider the set of points

{(. . . , i(α1), . . . , i(α2), . . . ) : αi ∈ λ′}

which are simply a subset of the cantor set which are restricted to finitely many Cn’s.

This is surjective since for any p ∈ ∏n∈N{0, 1}, we can find a point c ∈ C such that f(c) = p
as follows: if pi = 0 or 1, then we place c in Ci or 2

3 + Ci
3 . Continuing inductively, which

we can since this is a countable process, we’ll eventually generate a point c ∈ C for which
f(c) = p.

Now observe that this is injective. Note that

f(c1) = f(c2) =⇒ (i1(c1), i2(c1), . . . ) = (i1(c2), i2(c2), . . . )
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Since every coordinate must be equal, we see that the location of the two points c1 and c2
must be equal; hence, c1 = c2.

Finally observe that f open, since the image of every mapping consist of fixating a finite
number of 1’s and hence corresponds to specifying a finite number of elements in the image.
By definition, this is an open set in the product space.

Now since f is an open, continuous bijection, we have by Theorem 8.28 that f is a homeo-
morphism. Therefore, ∏n∈N{0, 1} is homeomorphic to the Cantor set.

�

Exercise 8.45 A torus is the surface of a doughnut. Construct a torus as

1. an identification space of C, the cylinder

2. an identification space of X = [0, 1]× [0, 1]

3. an identification space of R2.

Solution:

1. To construct a torus from a cylinder, we simply glue the ends of the cylinder together
in a continuous fashion.

2. To construct a from X, we identify points together the points from the top and bottom
of the box and identify the points together on the sides of the box. Thus we can
construct a torus as

T =
{
{(x, 0) ∪ (x, 1)} : x ∈ (0, 1)

}
∪
{
{(0, y) ∪ (1, y)} : y ∈ [0, 1]

}

using the identification space X.

3. With an identification space of R, we see that can create the map

T =
{
{(x,−∞)} ∪ {(x,∞)x ∈ R}}

}
∪
{
{(−∞), y} ∪ {(∞, y)y ∈ R}

}

�
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Exercise 8.46 Describe the 2-dimensional sphere (the boundary of a 3 dimensional ball
in R3) as an identification space of two discs in R2 by drawing a figure.

Solution:
Consider two discs of radius 2 centered at x = (−1, 0) and x = (1, 0). Then we can

construct a sphere with the map{
{(x,

√
4− (x− 2)2) ∪ (−x,

√
4− (x− 2)2) : x ∈ [0, 4]}

∪
{
{(x,−

√
4− (x+ 2)2) ∪ (x,−

√
4− (x+ 2)2) : x ∈ [−4, 0]}

}

while the points in the interior of the disk get symmetrical mapped to the bottom and top
hemispheres.

�

Theorem 8.47 The quotient topology actually defines a topology

Proof: We can verify the collection of sets T in Y actually forms a topology by verifying
the four properties.

1. Observe that ∅ ⊂ Y and f−1(∅) = ∅, an open set in X, so that ∅ ∈ T.

2. Since f is surjective, we know that f(X) = Y . Hence f−1(Y ) = X, an open set, so
that Y ∈ T.

3. Observe that if U ,V ∈ T, then f−1(U ∩ V ) = f−1(U) ∩ f−1(V ). As this is the
intersection of two open sets in X, we see that f−1(U ∩ V ) is open in X so that
U ∩ V ∈ T.

4. Finally, suppose {Uα}α∈λ is a collection of sets in T. Then observe that

f−1(
⋃
α∈λ

Uα) =
⋃
α∈λ

f−1(Uα).

The right hand side is the arbitrary union of open sets in X, which is also open in X.
Hence f−1(

⋃
α∈λ

Uα) is open in X so that Uα ∈ T for all α ∈ λ.

With the four properties proven, we can now conclude that this does form a topology.

�

Theorem 8.48 Let X be a topological space, Y be a set, and f : X → Y a surjective
map. The quotient topology on Y is the finest (largest) topology that makes f continuous.
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Proof: Suppose we try adding a set U to the quotient topology. Then f−1(U) is not open,
since if it were then U would already be in the topology, and thus f would no longer be
continuous. Thus it is the largest topology that makes f continuous.

�

Theorem 8.53 Let f : X → Y be a quotient map. Then a map g : Y → Z is continuous
if and only if g ◦ f is continuous.

Proof: First we prove the forward direction. Suppose that f : X → Y is a quotient map
and g : Y → Z is continuous. By Theorem 8.9, the composition g ◦ f must also be continu-
ous, which proves this direction.

Now suppose that g ◦ f is continuous. If U is an open set in Z, then (g ◦ f)−1(U) is
open in X. Note that (g ◦ f)−1(U) = f−1(g−1(U)). Since this is open in X, and because f
is a quotient map, it must be that g−1(U) is open in Y . Therefore, we have that g : Y → Z
is a continuous mapping, which proves this direction and completes the proof.

�

Exercise 8.54 Let the cylinders C∗ and C be defined as at the beginning of this section.
Prove that C∗ is homeomorphic to C by constructing a map h : C∗ → C and showing it is
a continuous bijection from a compact space into a Hausdorff space.
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Chapter 9
Connectedness: When Things Don’t Fall Into Pieces

Theorem 9.1 The following are equivalent:

1. X is connected

2. there is no continuous function f : X → Rstd such that f(X) = {0, 1}

3. X is not the union of two disjoint nonempty separated sets

4. X is not the union of two disjoint nonempty closed sets

5. the only subsets of X that are both closed and open in X are both the empty set
and X itself

6. for every pair of points p and q and every open cover {Uα}α∈λ of X there exists
a finite number of Uα’s, {Uα1 ,Uα2 , . . . ,Uαn} such that p ∈ Uα1 , q ∈ Uαn for each
i < n, Uαi ∩Uαi+1 6= ∅.

Proof:

(1 =⇒ 2) Suppose X is connected, and for contradiction that there is a continuous
function f : X → Rstd such that f(X) = {0, 1}. However, this would imply that
f−1(1) and f−1(0) are (1) disjoint open sets in X such that (2) their union is X.
However, that contradicts the fact that X is connected by definition. Therefore,
there is no continuous function f : X → Rstd such that f(X) = {0, 1}.

(2 =⇒ 1) Now if there is no continuous function f : X → Rstd such that f(X) =
{0, 1}, then that means X cannot be split into two disjoint open sets whos union
is X, which implies that X is connected.

(1 =⇒ 3) Since X is connected, it is not the union of two nonempty disjoint open
subsets of X. However, suppose A,B are two separated sets such that A∪B = X.

(3 =⇒ 1) Suppose now that X is not the union of two disjoint nonempty sep-
arated sets. Then X is not union of two disjoint open sets, so that X is connected.

(1 =⇒ 4) Suppose X is connected, and for contradiction that X = A ∪B where
A and B are disjoint nonempty closed sets. Then we can construct a continuous
function from f : X → {0, 1}, where f−1(0) = A and f−1(1) = B. However,
this contradictions the fact that X is connected, so that X is no the union of two
disjoint nonempty closed sets.

(4 =⇒ 1) Suppose X is not the union of two disjoint nonempty closed sets. Then
there is no continuous function f : X → {0, 1} since f−1(0) and f−1(1) cannot be
open or closed. Thus X must be connected.

(1 =⇒ 5) Suppose X is connected. Suppose there is a set such that A 6= X
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and A 6= ∅ is open and closed. Then Ac ∪A = X. However, that would mean X is
the union of two disjoint non empty open sets, which is a contradiction. Thus the
only open and closed sets are X and ∅.

(5 =⇒ 1) Suppose the only open and closed sets in X are X and ∅. Suppose
for contradiction that X is not connected, so that X = A ∪ B for two disjoint
nonempty open sets. Then Xc = (A∪B)c = Ac ∩Bc = ∅. However, this is a con-
tradiction since their intersection must be nonempty. Therefore, X is connected.

�

Exercise 9.2 Exercise 9.2 Which of the following spaces are connected?

1. R with the discrete topology?

2. R with the indiscrete topology?

3. R with the finite complement topology?

4. RLL?

5. Q as a subspace of Rstd?

6. R−Q as a subspace of Rstd?

Solution:

1. Every subset of R is open and closed. This violates Theorem 9.1(5) so that R is
not connected under the discrete topology.

2. The only sets which are open and closed are R and ∅. Thus by Theorem 9.1(5) R

is connected under the indiscrete topology.

3. For contradiction suppose there is a set U ⊂ R which is open and closed and not
R or the emptyset.
Since U is open, U c is finite. However (U c)c = U is infinite and hence U c is not an
open set. But this contradicts the assumption that U was open and closed. Thus
R is connected on the finite complement topology.

4. Consider a basic open set [a, b). Observe that

[a, b)c = (−∞, a) ∪ [b,∞)

which is the union of two open sets, and hence is open. Thus [a, b) is open and
closed. By Theorem 9.1.5, we have that RLL is not connected.

5. Observe that (Q ∩ (−∞, π)) and (Q ∩ (π,∞)) are disjoint, separated sets in the
subspace Q and

(Q∩ (−∞, π)) ∩ (Q∩ (π,∞)) = Q.
Thus Q is not open as a subspace of Rstd.
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6. Observe that (R−Q) ∩ (−∞, 0) and (R−Q) ∩ (0,∞) are disjoint separated sets
and

((R−Q) ∩ (−∞, 0)) ∪ ((R−Q) ∩ (0,∞)) = R−Q.

Thus R−Q is not connected.

�

Theorem 9.3 The space Rstd is connected.

Proof: The only closed and open sets in Rstd are the emptyset and R itself, so that by
Theorem 9.1(5) we can conclude that Rstd is connected.

�

Theorem 9.4 Let A and B be separated subsets of a space X. If C is a connected
subset of A∪B, then either C ⊂ A or C ⊂ B.

Proof: Observe that if C is a connected subset of A∪B, where A and B are separated
in X, then C is not the union of two disjoint open sets in the A∪B subspace topology.

Suppose for the sake of contradiction that C ⊂ A and C ⊂ B. Then observe that

C ⊂ A∩B = ∅

which is a contradiction since C is nonempty. Thus it must be that C ⊂ A or C ⊂ B.

�

Theorem 9.5 Let {Cα}α∈λ be a collection of connected subsets of X and E another
connected subset ofX that for each α ∈ λ, E ∩Cα 6= ∅. Then E ∪ (

⋃
α∈λ

Cα) is connected.

Proof: Suppose for the sake of contradicition that E ∪ ( ⋃
α∈λ

Cα) is not connected. Then

E ∪ ( ⋃
α∈λ

Cα) = A∪B where A and B are some separated sets in X. Observe that since
E is a connected subset of X, we have by Theorem 9.4 that E ⊂ A or E ⊂ B. Without
loss of generality suppose E ⊂ A. Then since each Cα is a connected subset of A ∪B,
Theorem 9.4 implies that Cα ⊂ B for at least one α ∈ λ. However, this is a contradiction
since E ∩Cα 6= ∅ for all α ∈ λ, while A∩B = ∅. Therefore, we must have that E ∪ ( ⋃

α∈λ
)

is connected.

�

Theorem 9.6 Let C be a connected subset of the topological space X. If D is a subset
of X such that C ⊂ D ⊂ C, then D is connected.
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Proof: Suppose that C is a connected subset of X and for the sake of contradiction
that D such that C ⊂ D ⊂ C is not connected. Then there exists disjoint open sets
A and B such that A ∪B = D. Since C is connected, we know by Theorem 9.5 that
C ∩A = ∅ or C ∩B = ∅. Without loss of generality, suppose that C ∩A = ∅. Then this
is a contradiction since A ⊂ D ⊂ C. Therefore, we must have that D is connected.

�

Theorem 9.8 Let X be a topological space, C a connected subset of X, and X −C =
A
∣∣∣B. Then A∪C and B ∪C are each connected

Proof: Suppose that X −C = A∪B where A and B are separated. Now suppose that
A∪C is not connected, so that A∩C = U ∪ V where U ,V are open. Now suppose that
U ∩C 6= ∅ and V ∩C 6= ∅. Then (U ∩C) ∪ (V ∩C) = A∩C

�

Presented in class 4/3/19
Theorem 9.12 Let f : X → Y be a continuous, surjective function. If X is connected,
then Y is connected.

Proof: Suppose f : X → Y is a continuous, surjective function. We can do proof
by contradiction. Suppose X is connected but Y is not connected. By Theorem 9.1
part 5, there exists a set V ⊂ Y , V 6= ∅ V 6= Y , such that V is open and closed in
Y . By continuity, f−1(V ) is both open and closed in X, and by surjectivity, f−1(V )
is a proper subset of X. Thus X has an open and closed set, one which is not ∅ or X,
which contradicts the fact that X is not connected by Theorem 9.1 part 5. Thus if X is
connected, Y is connected, as desired.

�

Theorem 9.13 (Intermediate Value Theorem!) Let f : Rstd → Rstd be a continuous
map. If a, b ∈ R and r is a point of R such that f(a) < r < f(b) then there exists a
point c in (a, b) such that f(c) = r

Proof: Observe that Rstd is connected. Since f : Rstd → Rstd, connected should be
preserved.

Suppose there does not exist a point c ∈ (a, b) such that f(c) = r. Then f(x) < r
or r < f(x) for all x ∈ (a, b). However since f(R) = R, this implies that Rstd is not
connected, which contradicts the fact that Rstd is connected. Therefore such a c must
exist.

�

Theorem 9.18 Each component of X is connected, closed, and not contained in any
strictly larger connected subset of X.
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Proof: Consider a component C =
⋃
α∈λ

Cα of p in X, where each Cα is connected and
p ∈ Cα for all α ∈ λ. Observe that we can apply Theorem 9.5 to conclude that C is
connected, since (1) no member of the union of C is disjoint from any other member (as
they all contain p) and (2) each member is connected.

Suppose that C is not closed. Then there is a point q 6∈ C and an open set U con-
taining q such that (U − {q}) ∩C 6= ∅.

�

Theorem 9.35 A path connected space is connected.

Proof: Suppose X is path connected but not connected. Then there exist two disjoint
open subsets A,B such that A∪B = X. Observe that any point in A cannot be joined
together with any point B by a path, a contradiction to the path connectivity of X. Thus
X must be connected.

�

Theorem 9.36 The flea and comb space is connected but not pathwise connected.
(The flea and comb space is the union of the topologist’s comb and the point (0, 1).)

Proof: Let A be the set of the comb space. This is obviously path connected, and so
it is connected by Theorem 9.35. Observe now that

A ⊂ A∪ flea ⊂ A

so that A∪ flea, the flea and comb space, must be connected.

�
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Chapter 10
Metric Spaces: Getting some distance
4/8/19 Q: Why does X have to be a metric space?
Lebesgue Number Theorem 10.24 Let {Uα}α∈λ be an open cover of a compact set A in a
metric space X. Then there exists a δ > 0 such that for every point p ∈ A, B(p, δ) ⊂ Uα for some
α. This number δ is called a Lebesgue number of the cover.

Proof: Since A is compact, there exists a finite subcover {Uα1 ,Uα2 , . . . ,Uαn}. Now suppose for
the sake of contradiction that there does not exists such a δ. Then in order for this to happen, we
would need that for every B(p, δ) containing p there exists a member of Uα′ ∈ {Uα1 ,Uα2 , . . . ,Uαn}
such that B(p, δ) 6⊂ Uα′ . But since we can theoretically propose an infinite number of δ, we must
have an infinite number of such U ′αs.

However, we cannot do this in the finite subcover, as it is finite. Therefore the contrary must
be true: there exists a δ such that for every p ∈ A, B(p, δ) ⊂ Uα for some α. And since this is true
for the finite subcover, which is a subset of the open cover, this is definitely true for the open cover.

�

Theorem 10.25 Let γ : [0, 1] → X be a path: a continuous map from [0, 1] into the space
X. Given an open cover {Uα} of X, show that [0, 1] can be divided into N intervals of the form
Ii = [ i−1

N , i
N ] such that each γ(Ii) lies completely in one set of the cover.

Proof: If {Uα}α∈λ is an open cover of X, then consider the set {γ−1(Uα)}α∈λ. This will be an
open cover of γ, since we know γ maps [0, 1] into X. However, since γ is compact, we know by
Lebesgue Number Theorem that there exists a δ such that p ∈ B(p, δ) ⊂ γ−1(Uα) for all p ∈ [0, 1]
where γ−1(Uα) is some set in the open cover containing p.

Let 1
N
< δ where N is a positive integer. Then observe that the sequence of intervals

[
i− 1
N

, i
N

]
1 ≤ i ≤ N

will each be contained in at least one member of γ−1(Uα). Thus[
i− 1
N

, i
N

]
⊂ γ−1(Uα) =⇒ γ

([
i− 1
N

, i
N

])
⊂ Uα.

Thus [0, 1] can be divided into N intervals of the form Ii = [ i−1
N , i

N ] such that each γ(Ii) lies
completely in one set of the cover in X, which is what we set out to show.

�
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Chapter 13
Fundamental Group: Capturing Holes

Theorem 13.2 Given topological spaces X and Y with S ⊂ X, homotopy relative to S is
an equivalence relation on the set of all the functions from X to Y . In particular, if S = ∅,
homotopy is an equvialence relation on the set of all continuous functions from X to Y .

Proof: Let f and g be continuous functions from X to Y . Let us denote f 'S g to mean
that f and g are homotopic relative to S ⊂ X.
• Reflexive: Observe that this relation is reflexive. If H(x, t) = f(x) for all t ∈ [0, 1],

then it is trivial that H forms a homotopy relative to S between f and itself.

• Symmetric: If f 'S g, then there is a continuous function H : X × [0, 1] → Y such
that

H(x, 0) = f(x) for all x ∈ X
H(x, 1) = g(x) for all x ∈ X

H(x, t) = f(x) = g(x) for all x ∈ S, t ∈ [0, 1]

then consider H(x, 1− t) and observe that

H(x, 1) = f(x) for all x ∈ X
H(x, 0) = g(x) for all x ∈ X

H(x, 1− t) = f(x) = g(x) for all x ∈ S, t ∈ [0, 1]

is a homotopy that deforms g into f . Thus g 'S f , so the relation is symmetric.

• Transitive: Now suppose f 'S g and g 'S h. Then there exist continuous functions
H : X × [0, 1]→ Y and G : X × [0, 1]→ Y such that

H(x, 0) = f(x) for all x ∈ X
H(x, 1) = g(x) for all x ∈ X

H(x, t) = f(x) = g(x) for all x ∈ S, t ∈ [0, 1]

and

G(x, 0) = g(x) for all x ∈ X
G(x, 1) = h(x) for all x ∈ X

G(x, t) = g(x) = h(x) for all x ∈ S, t ∈ [0, 1].

Now observe that we can construct the function

F =

H(x, 2t) 0 ≤ t ≤ 1
2

G(x, 2t− 1) 1
2 < t ≤ 1

which will be a homotopy relative to S from f to h. Note that continuity here is guar-
anteed by application of the pasting lemma, since H and G are continuous on the same
intervals. In total, we then have that f 'S g and g 'S h imply f 'S h, as desired.

�

Theorem 13.3 If α,α′, β and β′ are paths in a space X such that α ∼ α′, β ∼ β′ and
α(0) = β(1), then α · β ∼ α′ · β′.
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Proof: Since α ∼ α′ and β ∼ β′, there exists homotopies A and B which connect α to α′
and β to β′. Consider the continuous function

H(x, t) =

A(2x, t) 0 ≤ x ≤ 1
2

B(2x− 1, t) 1
2 < x ≤ 1

which is a homotopy from α · β to α′ · β′ since H(x, 0) = α(x) · β(x), H(x, 1) = α′(x) · β′(x),
H(0, t) = α(0) = α′(0) and H(1, t) = β(0) = β′(0).

�

Theorem 13.4 Given paths α, β and γ where the following products are defined, then
(α · β) · γ ∼ (β · γ) · α and ([α] · [β]) · [γ] = [α] · ([β] · [γ])

Proof: Consider the homotopy given by

H(x, t) =



α
( 4x

2− t

)
0 ≤ x ≤ 2− t

4
β(4x+ t− 2) 2− t

4 ≤ x ≤ 3− t
4

γ
(4x− 3 + t

1 + t

) 3− t
4 ≤ x ≤ 1.

Observe that

H(x, 0) =


α(2x) 0 ≤ x ≤ 1

2
β(4x− 2) 1

2 ≤ x ≤ 3
4

γ(4x− 3) 3
4 ≤ x ≤ 1

= α · (β · γ)

and

H(x, 1) =


α(2x) 0 ≤ x ≤ 1

4
β(4x− 2) 1

4 ≤ x ≤ 1
2

γ(4x− 3) 1
2 ≤ x ≤ 1

= (α · β) · γ.

Thus we see that H is continuous by the pasting lemma, H(x, 0) = α · (β · γ) and H(x, 1) =
(α · β) · γ. In addition, we see that H(0, t) = α · (β · γ)(0) = (α · β) · γ(0) and H(1, t) =
(α · β) · γ(1) = α · (β · γ)(1). Thus we have that α · (β · γ) ∼ (α · β) · γ, which implies that

[α · (β · γ)] = [(α · β) · γ]

as desired.

�

Theorem 13.5 Let α be a path with α(0) = x0. Then α · α−1 ∼ ex0 , where ex0 is the
constant path at x0.
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Proof: Consider the homotopy

H(x, t) =


α(2x) 0 ≤ x ≤ 1−t

2
α−1(2x− 1) 1−t

2 ≤ x ≤ 1− t
ex0 1− t ≤ x ≤ 1.

which traverses α,α−1, and then sits at x0. Observe that

H(x, 0) =

α(2x) 0 ≤ x ≤ 1
2

α−1(2x− 1) 1
2 ≤ x ≤ 1.

= α · α−1

while
H(x, 1) = ex0 0 ≤ x ≤ 1.

In addition, we have that α · α−1(x) = ex0(x) for x = 0, 1. Also, H is continuous by the
pasting lemma. Thus we have that

α · α−1 ∼ ex0

as desired. The proof is nearly identitical to show that α−1 · α ∼ ex0 .

�

Theorem 13.6 The fundamental group π1(X,x0) is a group. The identity element is the
class of homotopolically trivial loops based at x0.

Proof:

Identity. With a group operation ·, we see that there is an identity element ex0 such that
[α] · [α−1] = [α−1] · [α] = [ex0 ]

Associativity. We have associativity of products by Theorem 13.4.

Inverse Elements. Inverse elements exist by simply defining α−1(t) = α(1− t). This will
still be loop about x0, and hence will continue to be a member of π1(X,x0).

Closure. Finally, observe that the product is closed in the group, since any sequence of loops
about x0, their product

[α1] · [α2] · . . . · [αn] = [α1 · α2 · . . . · αn]

will itself be a loop about x0, and hence by definition., an element which is already in
the set. Thus the fundamental group π1(X,x0) is in fact a group.

�

Theorem 13.7 If X is path connected, then π1(X, p) ∼= π1(X, q) where p, q ∈ X.
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Proof: We’ll do this by constructing a bijective homomorphism. Since X is path connected,
there must exist a path γ from p to q. Let α and β be loops centered at p, q respectively. Then
observe that the function ψ : π1(X, p)→ π1(X, q) defined as

ψ[α] = γ−1αγ

is a homomorphism, since if α1,α2 ∈ π1(X, p),

ψ[α1α2] = γ−1α1α2γ = γ−1α1γγ
−1α2γ = ψ[α1]ψ[α2].

We can similarly construct a homomorphism φ : π1(X, q)→ π1(X, p) as

φ[β] = γβγ−1.

The proof is exactly the same as before: let β1, β2 ∈ π1(X, q). Then

φ[β1β2] = γβ1β2γ
−1 = γβ1γ

−1γβ2γ
−1 = φ[β1]φ[β2].

Now observe that this homomorphism we constructed is in fact the inverse of ψ, since

ψ(φ(β)) = γ−1φ(β)γ = γ−1γβγ−1γ = β

φ(φ(α)) = γφ(α)γ−1 = γγ−1αγγ−1 = α.

Therefore, ψ is a bijective homomorphism, which proves that π1(X, p) ∼= π1(X, q).

�

Corollay 13.8 Suppose X is a topological space and there is a path between the points p
and q in X. Then π1(X, p) is isomorphic to π1(X, q).

Proof: Observe that this result is immediate since the proof of Theorem 13.7 relied on the fact
that there exists a path between p and q. Thus the proof can be used exactly the same to show
that path connectedness between two points is sufficient to guarantee that π1(X, p) ' π1(X, q).

�

Exercise 13.9 Let α be a loop into a topological space X. Then α = β ◦ω|[0,1] where ω is the
standard wrapping map and β is some continuous function from S1 into X. This relationship
gives a correspondence between loops in X and continuous maps from S into X.

Solution: Consider the function ω−1 : S → [0, 1] where ω(0) = ω(1). As this is a continuous
function, we then see that α ◦ ω−1 : S → X is a continuous function that maps out the curve
X. Define this to be β. Then observe that we can write this as

β = α ◦ ω−1 =⇒ α = β ◦ ω

so that α can be written as a continuous from from S → X composed with a continuous
function from [0, 1]→ S, as desired.

�

Theorem 13.10 Let X be a topological space and let p be a point in X. Then a loop
α = β ◦ ω|[0,1] (where ω is the standard wrapping map and β is a continuous function from
S1 into X) is homotopically trivial if and only if β can be extended to a continuous function
from the unit disk D2 to X.
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Proof:

�

Theorem 13.11 Show the following (1 denotes the trivial group):

1. π1([0, 1]) ∼= 1

2. π1(Rn) ∼= 1 for n ≥ 1

3. π1(X) ∼= 1, if X is a convex set in Rn

4. π1(X) ∼= 1 if X is a cone.

5. π1(X) ∼= 1 if X is a star-like space in Rn (a subset of Rn is called star-like if there is a
fixed point x0 ∈ X such that for any x ∈ X, the line segment between x0 and x lies in
X; a five pointed star is an example of a star-like space that is not convex.)

Proof:

1. Observe that for any loop α ∈ [0, 1], we can write a homotopy between x0 = α(0) as

H(x, t) = tx0 + (1− t)α(x)

2. Again, loop α(x) based at x0 can be reduced to the trivial loop via the homotopy

H(x, t) = tx0 + (1− t)α(x)

3. A convex set in Rn has the property that every straight line between any two points in
the set is entirely contained within the set. Thus we can apply the straight line homotopy
to any loop based at x0 as in (1.) and (2.).

4. Observe that every point on the cone can be connected to the apex via a straight line.
Thus we can connect every loop based at the apex to itself via a straight-line homotopy.

5. In a star shaped figure, we can connect every point to one another via straight lines which
intersect the fixed point x0 without leaving the figure. Thus we can apply the straight
line homotopy here as well.

�

Exercise 13.12 Show the following:

1. π1(S0, 1) ∼= 1 where S0 is the zero-dimensional sphere {−1, 1}, the set of points unit
distance from the origin in R1.

2. π1(S2) ∼= 1.

3. π1(Sn) ∼= 1 for n ≥ 3.

Solution:

Page 5



Math 147 Topology Section 13 Spring 2019

1. In π1(S0, 1), the only element is the identity itself. Thus this group is literally trivial.

2. Consider a path γ in π1(S2), and suppose that γ is not a space filling curve. Then γ will
miss at least a single point. Thus we can stereographically project γ on the sphere onto
the R2 plane via a homeomorphism h.
However, we know that any loop in R2 is homotopically trivial. Therefore there exists
an a homotopy H from h(γ) to the trivial loop. Now note that h−1 ◦H will be a home-
omorphism of γ to the trivial loop on S2. Thus π1(S2) = 1.

Now suppose γ is a space filling curve. Observe that via the Lebesgue number theo-
rem, that this curve must enter and exit a finite number of times. Thus we can shift the
curve over a particular point p in the open set, and do this a finite number of times. We
can then stereographically project as before to shrink the curve on the surface to a point.

Thus in either case, we see that any loop on S2 can be contracted to a single point via
stereographic projection and the face that π1(R2) ∼= 1. Therefore we see that π1(S2) ∼= 1
as desired.

�

Exercise 13.13 Show that the cone over the Hawaiian earring is simply connected. Can you
generalize your insight?

Solution: First observe that this space is path connected, since each ring of the Hawaiian earing
are connected to the single point on the base of the cone and to the apex of the cone.

Now consider the unique point p on the base of the cone for which all rings intersect. Sup-
pose α is a loop based at this point. With Theorem 10.25, we can deduce that α cannot traverse
infinitely many rings in the Hawaiian earing. α is continuous and [0, 1] is a compact interval
and therefore it cannot be mapped into an infinitely long path, as this image would no longer
be compact.

Thus any loop α based at p traverses a finite number of rings. Therefore, we can con-
struct a homotopy H which lifts α over the apex of the cone and towards the point p itself,
via a straight line homotopy (which we can do via the definition of the cone). Note that this
will always be possible since there will only ever be a finite number of rings to lift over the apex.

Thus we have that π(X, p) ∼= 1, but since this space is path connected we have that
π1(X) ∼= 1. Therefore it is simply connected.

�

Theorem 13.14

1. Any loop α : [0, 1]→ S1 with α(0) = 1 can be written α = ω ◦ α̃ where α̃ : [0, 1]→ R1

satisfies α̃(0) = 0 and ω is the standard wrapping map.

2. If α : [0, 1]→ S1 is a loop, then α̃(1) is an integer.

3. Loops α1 and α2 are equivalent in S1 if and only if α̃1(1) = α̃2(1).

4. π1(S1) ∼= Z.
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Proof:

1. First observe that we can cover S1 with two open sets U and V , as demonstrated in the
figure below. Since [0, 1] is a compact interval, and α[0, 1] → S1, we know by Theorem
10.25 that we can divide [0, 1] into N intervals such that

α
([
i− 1
N

, i
N

])
lies in U or V .

U
V

α(0) = 1
x

y

α

Since U is not all of S1, we know that ω−1(U) exists. If we define ω(0) = 1 (i.e., if we
specify that our rotation starts at 1) then ω−1(U) will correspond to a union of open sets
around every integer in R. Also, ω−1(V ) will correspond to a union of intervals, each of
which do not intersect any member of Z.
Now since α

([
i−1
N , i

N

])
⊂ U or V , we can map this image to R via ω−1, starting from

the first interval
[
0, 1

N

]
which is mapped to a neighborhood of 0 in R. Thus we can define

a function α̃ as
α̃ = ω−1 ◦ α

if we specify that w(0) = 1 and α̃ : [0, 1]→ R by construction. Therefore, we can write

α = ω ◦ α̃

where α(0) = 0.

2. Since α(1) = α(0), we see that α must return to U at some point. And since there we
can subdivide [0, 1] into finite intervals to keep track of the mapping, there will always
be at most a finite number of rotations made around S.

Now let us shrink U containing 1 in S. As we shrink around 1, ω−1(U) will still be
a union of nieghborhoods of integers in R. And since we are to free to shrink U , we see
that the value of ˜alpha must be an integer.
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ω(ω(0) = 1)

0 1 2
U

V

U

V

U

U
V

α(0) = 1
x

y

α

If α̃(1) is not an integer, then we can shrink U in R past this non-integer value. However,
this implies that α is not a closed curve in S1 since α(1) 6= α(0). Hence, ω−1 ◦ α = α̃
takes on integer values.

ω(ω(0) = 1)

0 1 2
U

V

U

V

U
U

V

α(0) = 1
x

y

α

3. Suppose α̃1(1) = α̃2(1). Note that α̃1(0) = ˜α2(0), and as these are paths in R we can
construct a stright line homotopy between the two paths relative to {0, 1}. Thus α̃1 ∼ α̃2,
and there exists a homotopy H from α̃1 to α̃2.

Since ω is continuous, ω ◦H is a continuous and a homotopy between α1 and α2, since
(1) (ω ◦H)(0, t) = ω ◦ α̃1 = α1 and (2) (ω ◦H)(1, t) = ω ◦ α̃2 = α2, and the homotopy
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retains the endpoints.

4. Now consider the function γ : S→ Z given by

φ(γ) = γ̃(1).

Let γ1, γ2 ∈ π1(S1). Then observe that γ1 · γ2 will be a path which comples γ̃1 rotations,
followed by γ̃(2) rotations. Therefore

φ(γ1 · γ2) = γ̃1(1) + γ̃2(1) = φ(γ1) + φ(γ2).

Thus φ is a homomorphism. Now observe that part (3) of this problem proves injectivity,
while surjectivity comes from the fact that for any n ∈ Z, we can create a loop α such
that α completes n rotations in S, giving that α̃(1) = n. Therefore φ is bijective and
hence an isomorphism, so that π1(S) ∼= π1(Z).

�

Theorem 13.15 Let (X,x0), (Y , y0) be path connected spaces. Then

π1(X × Y , (x0, y0)) ∼= π1(X,x0)× π1(Y , y0)

via the canonical map that takes a loop γ in X × Y to (p ◦ γ, q ◦ γ) where p : X × Y → X
and q : X × Y → Y are projection maps.

Proof: Observe that the map (p ◦ γ, q ◦ γ) as defined above is a homomorphism. To show
this, let γ ∈ π(X × Y , (x0, y0)). Then

φ(γ) = (p ◦ γ, q ◦ γ) = (γx, γy) = (γx, ey0) · (ex0 , γy) = φ(γx) · φ(γy)

where γx is a loop in X based at x0, γy a loop in Y based at y0. Observe that this is bijective
since every loop in π1(X ×Y , (x0, y0)) is mapped to a loop in π1(X,x0)×π1(Y , y0), and every
loop in π1(X,x0)× π1(Y , y0) can be written as a loop in π1(X × Y , (x0, y0)). Therefore this
is a isomorphism and thus π1(X × Y , (x0, y0)) ∼= π1(X,x0)× π1(Y , y0)

�

Exercise 13.16 Find:

1. π1(X) where X is a solid torus.

2. π1(S2 × S)

3. π1(S2 × S2 × S2)

4. π1(X), where X is a direct product of kn copies of Sn, with kn = 0 for n sufficiently
large.
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Exercise 13.18 Check that for a continuous function f : X → Y , the induced homomor-
phism f∗ is well-defined (that is, the image of an equivalence class is independent of the chosen
representative.) Show that it is indeed a group homomorphism.

Solution: Observe that since α ∼ β, there exists a homotopy H between the two paths that
fixes the endpoints. Then observe that f ◦H is (1) a continuous function and (2) a homotopy
from f(α) to f(β). Thus f(α) ∼ f(β). Therefore, if α ∼ β then f(α) ∼ f(β) =⇒ [f ◦ α] =
[f ◦ β] =⇒ f∗([α]) = f∗([β]) so that our definition is well defined.

To show it is a group homomorphism, observe that

f∗([α · β]) = [f ◦ (α · β)] = [f ◦ α · f ◦ β] = [f ◦ α] · [f ◦ β] = f∗([α]) · f∗([β]).

Thus we see that this forms a group homomorphism.

�

Theorem 13.19 The following are true:

1. If f : (X,x0)→ (Y , y0) and g : (Y , y0)→ (Z, z0) are continuous maps, then (g ◦ f)∗ =
g∗f∗.

2. If id : (X,x0) → (Y , y0) is the identity map, then id∗ : π1(X,x0) → π1(X,x0) is the
identity homomorphism.

Proof:

1. Let [α] ∈ π1(X,x0). Then

(g ◦ f)∗([α]) = [(g ◦ f) ◦ α] = [g ◦ (f ◦ α)] = g∗([f∗([α])]) = g∗ ◦ f∗([α])

so that (g ◦ f)∗ = g∗f∗.

2. Let [α] ∈ π1(X,x0). Then
id∗([α]) = [id ◦ α] = [α].

Since this is a homomorphism on the group which sends every group element to itself,
we have that this is an identity homomorphism.

�

Theorem 13.20 If h : X → Y is a homeomorphism then

h∗ : π1(X,x0)→ π1(Y , y0)

is a group isomorphism. Thus homeomorphic, path-connected spaces have isomorphic funda-
mental groups.

Page 10



Math 147 Topology Section 13 Spring 2019

Proof: If h : X → Y is a homeomorphism, then h is continuous and bijective. Therefore,
if α ∈ π1(X,x0), then h∗ = [h ◦ α]. Since h−1 exists and is continuous, we then now if
β ∈ π1(Y , y0) then h−1

∗ = [h−1 ◦ α] is also a homomorphism. Now observe that

h∗[h
−1
∗ [β]] = [h ◦ [h−1 ◦ β]] = [β]

h−1
∗ [h∗[α]] = [h−1 ◦ [h ◦ α]] = [α].

Therefore, we see that h−1
∗ is the inverse homomorphism of h∗, which implies that the homo-

morphism is bijective. Therefore, the two groups are isomorphic.

�

Theorem 13.22 If f , g : (X,x0)→ (Y , y0) are continuous functions and f is homotopic to
g relative to x0, then f∗ = g∗.

Proof: Since f ' g, there exists a homotopy H such that H(x, 0) = f(x),H(x, 1) = g(x)
and H(x0, t) = f(x0) = g(x0) for all t ∈ [0, 1]. Let α ∈ π1(X,x0). Then observe that
H(α(x), t) is (1) continuous and (2) a homotopy from f ◦ α to g ◦ α. Therefore

f ◦ α ' g ◦ α =⇒ [f ◦ α] = [g ◦ α] =⇒ f∗ = g∗.

�

Lemma 13.23 Homotopy equivalence of spaces is an equivalence relation.

Proof: We can show that this satisfies the axioms for an equivalence relation.

Reflexive. Observe that if we let f = g = idX , then g ◦ f = idX and f ◦ g = idX . Thus a
topological space X is homotopy equivalent to itself.

Symmetric. The defintion of homotopy equivalence makes this obvious. Suppose X is ho-
motopy equivalent to Y . By definition, there exists continuous maps f : X → Y and
g : Y → X such that

g ◦ f ' idX f ◦ g ' idY .

Thus Y is homotopy equvalent to X since there exists continuous functions g : Y → X
and f : X → Y such that

f ◦ g ' idY g ◦ f ' idX .

Transitive. Suppose X is homotopy equivalent to Y which is homotopy equivalent to Z. By
definition, there exist continuous functions f1 : X → Y , f2 : Y → X, g1 : Y → Z,
g2 : Z → Y such that

f1 ◦ f2 ' idX f2 ◦ f1 ' idY and g1 ◦ g2 ' idY g2 ◦ g1 ' idZ

�

Theorem 13.24 If f : X → Y is a homotopy equivalence and y0 = f(x0), then f∗ :
π1(X,x0)→ π1(Y , y0) is an isomorphism. In particular, if X ∼ Y , then π1(X) ∼= π1(Y ).
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Proof: Since f is continuous fromX to Y , we already have a homomorphism from π1(X,x0)→
π1(Y , y0), given by f∗. Now consider the induced homomorphism g∗ where

g ◦ f ' idX and f ◦ g ' idY .

Then observe that if α ∈ π1(X,x0) then

g∗ ◦ f∗[α] = (g∗ ◦ f∗)[α] = [g ◦ f ◦ α].

Now since g ◦ f ' idX , we know that there exists a homotopy H such that H(x, 0) = g ◦ f
and H(x, 1) = idX while H(x0, t) = g ◦ f(x0) = idX(x0) = x0. Then observe that H(α(x), t)
is a homotopy from g ◦ f ◦α to α. As these two paths are homotopic, their equivalence classes
should be the same. Therefore, we see that

[g ◦ f ◦ α] = [α].

Now if β ∈ π1(Y , y0)
f∗ ◦ g∗[β] = (f∗ ◦ g∗)[β] = [f ◦ g ◦ β] = [β]

By the same argument. Therefore, g∗ is an inverse homomorphism of f∗, so that f∗ is ultimately
an isomorphism between the two groups. Thus π1(X,x0) ∼= π1(Y , y0).

�

Exercise 13.25 Show that for n ≥ 0, Rn+1 − {0} can be strong deformation retracted onto
Sn

Solution: Consider the homotopy R : Rn+1 → Sn such that

R(x, 0) = x for all x ∈ Rn+1

R(x, 1) = r(x) for all x ∈ R

R(a, t) = a for all a ∈ Sn

where
r(x) =

x
||x||

.

Thus we see that Rn+1 − {0} can be strong deformation retracted onto Sn.

�

Lemma 13.26 If A is strong deformation retract of X, then A and X are homotopy equiv-
alent.

Proof: Since A is a strong deformation retract of X, we know that there exists a continuous
function r : X → A such that r(a) = a for all a ∈ A. Consider also the inclusion map
i : A→ X. Observe that

i ◦ r : X → X r ◦ i : A→ A

and
r ◦ i = idA i ◦ r ' idX .

Thus by defintion we see tha A ∼ X.

�

Theorem 13.27 R2 is not homeomorphic to Rn, for any n 6= 2.
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Proof: Suppose for contradiction that R2 is homeomorphic to Rn. Then if we poke a hole
in R2, we can embed a circle in the space such that its interior contains the hole. We can then
strong deformation retract R2 onto the boundary of the disk. We then see the fundamental
group is Z by Theorem 13.24.

However, we know that Rn, n ≥ 2 with one hole missing is still a trivial group. In Rn,
we can move around the circle we embdedded in R2 to still compute a trivial fundamental
group. But this is a contradiction, since these two spaces are said to be homeomorphic but
their fundamental groups are inconsistent under change. Therefore, R2 is not homeomorphic
to Rn for any n ≥ 2.

Also observe that R2 is not homemorphic to R. This is because π1(R2) ∼= R×R. Also,
R2 is not homeomorphic to R0, as this is a single point. If we delete this point the fundamen-
tal group is empty, while the fundamental group of R2 would become equivalent to Z, and
hence these two spaces are not homemorphic. Therefore, we see that R is not homeomorphic
to Rn for any n 6= 2.

�

Exercise 13.28 Let x and y be two points in R2. Show that R2−{x, y} strong deformation
retracts onto the figure eight. In addition, show that R2. Show that R2−{x, y} strong defor-
mation retracts onto a theta space.

Solution: Observe that the figure eight and the theta space both have two holes inside of them.
If we configure both of these holds to individually contain x and y, then we can retract R ont
the boundaries of the figure eight and theta space.

Note we would not be able to do this without first poking two holes in R, since we would
otherwise not be able to retract the interior of the each hole in the figure eight or theta space
to its boundaries (for the same reason we can’t retract D2 to its boundary).

�

Theorem 13.29 If r : X → A is a strong deformation retraction and a ∈ A, then π1(X, a) ∼=
π1(A, a).

Proof: Suppose r : X → A is a strong deformation retraction. Then by Lemma 13.26, we
know that A and X are homotopy equivalent. Moreover, by Theorem 13.24, we have that
π1(X, a) ∼= π1(A, a) for a ∈ A.

�

Exercise 13.30 Calculate the fundamental group of the following spaces.

1. An annulus.

2. A cylinder.

3. The Möbius Band.

4. An open 3-ball with a diameter removed.
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Solution:
1. Suppose that we embed an annulus at the origin of the complex plane. Then it is given

by {z : R1 < |z| < R2} where R1 < R2. It should be fairly obvious that we can construct
a strong deformation retract to the set of points {z : |z| = R1}; that is, to the inner circle
of the annulus. As the fundamental group of the circle is Z, we can thus conclude that
the fundamental group of the annulus is also Z by Theorem 13.29.

2. For a cylinder, we can embedd such a structure in R3, which in this space we can construct
a strong deformation retract between the set of points on the cylinder to one of the two
disks which define the top and the bottom of the cylinder. Since the fundamental group
of a disk is trivial, we see that the fundamental group of the cylinder must also be trivial
by Theorem 13.29.

3. Observe that if we take a Möbius band and strong deformation retract the set of points
to one of its boundaries, we’ll get a closed curve, which we can then form a strong defor-
mation retraction to a circle. Since the fundamental group of a circle is Z, we see that
the fundamental group of the Möbius band is also Z.

However, if the cylinder does not have a filled top (i.e., the cylinder is just a piece
of paper folded on its ends) then the group is trivial

4. Observe that we can strong deformation retract an open 3-ball with a diameter removed
to a circle with a hole removed from its center. Since this has a fundamental group of
Z, we see that by Theorem 13.27 that the open 3-ball with diameter removed also has a
fundamental group of Z.

�

Theorem 13.32 Let A be a retract of X via the inclusion i : A ↪−→ X and retraction
r : X ↪−→ A. Then for a ∈ A, i∗ : π1(A, a)→ π1(X, a) is injective and r∗ : π1(X, a)→ π1(A, a)
is surjective.

Proof: First note that for any α ∈ π1(A, a) we have that

r∗ ◦ i∗([α]) = [r ◦ i ◦ α] = [α].

Therefore, we see that r∗ ◦ i∗([α]) = id∗ is the identity homomorphism on π1(A, a). Now
suppose that i∗ is not injective. Then we’ll have that r∗ ◦ i∗ 6= id∗, which is a contradiction.
Furthermore, if r∗ is not surjective then r∗ ◦ i∗ 6= id∗. Thus we see that i∗ is injective and r∗
is surjective.

�

Theorem 13.33 (No retraction theorem for D2.) There is no retraction from D2 to its
boundary.

Proof: Suppose for a contradiction that there exists a retraction r : D2 → S1. Then the
inclusion map i∗ : π1(S1) → π1(D2) should be injective, this is impossible since π1(S1) = Z

while π1(D2) is trivial. Thus there is no such r.
�

Page 14



Math 147 Topology Section 13 Spring 2019

Theorem 13.34 (Brouwer Fixed Point Theorem for D2.) Let f : D2 → D2 be a continuous
map. Then there is some x ∈ D2 for which f(x) = x.

Proof: Suppose for a contradiction that there exists a continuous function f : D2 → D2 such
that f(x) 6= x for all x ∈ D2. Consider the retraction φ(x) = x if x ∈ S1 and φ(x) = f(x)|proj
where f(x)proj is the projection of f(x) to its boundary through the straightline between f(x)
and x.

V
D2

U
f(x)

x

φ(f(x))

Observe that this function is continuous, since for any open set containing V ⊂ S1 contain-
ing φ(f(x)) there exists an open set U ∈ D2 containing f(x) such that φ(U) ⊂ V . See the
figure.

Note that what we have is a continuous retraction of D2 to its boundary, R. However, we
know from Theorem 13.33 that this is a contradiction. Thus there cannot be any such f , so
that for a continuous f : D2 → D2 there must exist an x ∈ D2 such that f(x) = x, as desired.

�

Theorem 13.40 Let X = U ∪ V , where U and V are open and path connected and U ∩ V
is path-connected, simply connected and nonempty. Then π1(X) ∼= π1(U) ? π1(V ).

Proof: Let x0 ∈ U ∩ V and let Γ be a loop based at x0. Then observe that Γ : [0, 1]→ X is
a path from a compact interval, and U and V form an open cover of X. By Theorem 10.25 we
may divide the interval into finite subintervals such that the image of each interval lies in U or V .

We now claim that we can write any loop Γ as product of loops in π1(U) and π1(V ). Since
U ∩ V is path connected, we know that for every every time our path intersects U ∩ V there
exists a point p ∈ U ∩V such that we can glue a new path γ from p to x0. This path will either
lie entirely in U or in V , thus becoming a member of π1(U) and π1(V ). And by Theorem
10.25, this can be done a finite number of times.

Now consider the function
φ(Γ) = α1β1 · · ·αnβn

where α1β1 · · ·αnβn is the decomposition of Γ and αi ∈ π1(U) while βi ∈ πi(V ) for i =
1, 2, . . . ,n. We’ll now show this is a homomorphism. For any two paths Γ1, Γ2, each have some
decomposition α(1)1 β

(1)
1 · · ·α

(1)
n β

(1)
n and Γ2 = α

(2)
1 β

(2)
1 · · ·α

(2)
n β

(2)
n . Therefore, we see that

Γ1 · Γ2 = α
(1)
1 β

(1)
1 · · ·α(1)n β(1)n α

(2)
1 β

(2)
1 · · ·α(2)n β(2)n
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so that
φ(Γ1 · Γ2) = α

(1)
1 β

(1)
1 · · ·α(1)n β(1)n α

(2)
1 β

(2)
1 · · ·α(2)n β(2)n = φ(Γ1)φ(Γ2).

Thus observe that for any α1β1 · · ·αnβn ∈ π1(X), this corresponds to some unique path
Γ ∈ pi1(X) such that

φ(Γ) = α1β1 · · ·αnβn

Thus we get surjectivity for free, since any member of π1(U) ? π1(V ) corresponds to some path
Γ ∈ π1(X); therefore, the image of Γ under φ is then the element of π1(U) ? π1(V ) we began
with. However, this also lends uniqueness, since every member of π1(U) ? π1(V ) corresponds
uniquely to some path of Γ ∈ π1(X). Therefore we see that this is a isomorphism, so that
π1(X) ∼= π1(U) ∗ π1(V ).

�

Exercise 13.41 Let X be the bouqeuet of n circles. What is π1(X)?

Solution: The bouquet of n circles simply identifies a point on a set of n circles to the same
point. Thus we see by repeated application of Theorem 13.30, π1(X) ∼= π1(S) ∗ π1(S) ∗ · · · ∗
π1(S) = Z ∗Z ∗ · · · ∗Z. That is, the free product of n groups of Z.

�

Exercise 13.32 Find a path-connected space X with open, path connected subsets U and
V of X such that X = U ∪ V where U and V are both simply connected, but X is not simply
connected. Conclude that the hypothesis that U ∩ V is path connected is necessary.

Solution: Consider the sets

U

V

where we see that U ∩V is not path connected. In this example we see that the consequence
of this is that the union of the sets U ∪ V is no longer simply connected, and hence it has a
nontrivial fundamental group. However, if we were to ignore the condition that U ∩ V be
path connected, then Van Kampen’s theorem in this case would otherwise guarantee that its
fundamental group should be the free product of two trivial groups, and hence be a trivial
group itself. Thus path connectedness of U ∩ V is a necessary condition for Van Kampen’s
theorem to be true.
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�

Theorem 13.44 Let X be a wedge of two cones over two Hawaiian earrings where they are
identified at the points of tangency of the circles of each Hawaiian earring, as in Figure 13.9.
Then π1(X) 6∼= 1.

Proof: Suppose αn is a loop on the n-th ring on the left Hawaiian earring, while βn is a loop
on the n-th ring on the right Hawaiian earing. Thus consider the path

γ = α1β1α2β2 · · ·αkβk

where k ∈ N. Observe that γ ∈ π1(X) (more specifically, its equivalence class is a member).
However, if we attempt to lift this path towards the apex of the cone, which we can individually
do without any issue for α1α2 · · ·αk and β1β2 · · · βk, we run into an issue as k → ∞. This
is because [0, 1] is a compact interval and cannot be mapped into an infinite path, so that
if we attempted to form any homotopy it would automatically fail to be compact and hence
continuous if we try to lift the path γ up simultaneously. Thus this path is not homotopic to
a point, so that π1(X) 6= 1.

�
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