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1. Categories, Functors and Natural Transformations.

1.1 Introduction: What are the Foundations of Math?

Category theory attempts to “zoom out” of mathematical constructions and to point out the
higher level relationships between different mathematical constructions. The three main con-
cepts are categories, functors, and natural transformations, although the theory grew out of
implications of these main concepts.

These main concepts were first seen in the study of algebraic topology, since it was observed
that topological problems could be reduced to algebraic, and vice versa. But how? Since there
was no formal notion for what it really meant to take a topological space X and associate it
with some group π(X), category theory came about to formalize this.

However, as we shall soon see, category theory has a big problem. Specifically, there isn’t a
universally agreed upon foundation for category theory, or for mathematics in general.

What do we mean by foundations?

Well, consider a topological space X, or a group G, or a domain R. Then suppose I ask you
“What is X?” or “What is G” or “What is R?” Well, you’ll tell me it’s a topological space, a
group, or the set of real numbers and list the axioms for each object.

That is, a correct answer will characterize X, G or R as a set which satisfies some axioms.
But really, that’s what all our mathematical objects are. So at this point, our foundations are
grounded in set theory.

What is set theory?

Suppose I ask you what is set theory. While we all know there are different set theories, most
people don’t think about set theory axioms on a daily and won’t know (like myself). But
answering this question requires answering the next.
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What is a set?

We usually never have to face this question. But in developing a theory that considers rela-
tionships between different sets, we have to.

Our intuition tells us that sets X are a collection of objects, and that every collection
of objects is a set. We intuitively think that we can form collections of objects to create a
set X, and that we can form intersection and unions between sets, or even compute power sets,
to produce other sets. We also think we can also form sets such as

X = {x | ϕ(x)}

where ϕ is some logical condition of inclusion. However, this leads to paradoxes, one of the
most famous known as Russel’s Paradox which we can describe as follows.
Russel’s Paradox. Let X be a set such that

X = {A is a set | A is not a member of itself.}

Now observe the following.

1. If X ∈ X, then consequently X is not a member of itself. In other words, if X ∈ X, then
X 6∈ X.

Clearly, this is a contradiction. Since X ∈ X is nonsense, X 6∈ X, right?

2. Suppose X 6∈ X. Then X is not a member of itself, so X ∈ X by the condition of member
of X. In other words, X 6∈ X =⇒ X ∈ X.

See the problem here? Not every collection of objects is a set. So our previous notions of
sets aren’t correct.

Note that our trouble arose when we said that a set is a collection of objects, and a
collection of objects is a set. This is because no, not every collection of objects is a set.
Thus we need to go back and fix our definition of a set.

What do we do?

This is what many mathematicians asked in the early 1900s when they identified the paradoxes
that arise from our notion of a set. The result has been multiple different types of set theories,
and so there isn’t a clear choice on what to make our foundations. However, this isn’t a huge
problem for category theory. Category theory has its own core axioms, but the fact that there
are different set theories simply means that such core axioms will be phrased differently under
different set theories (although there are some cases where one does need to be careful with
their foundations). In this text, we’ll be a bit sloppy with the foundations of category theory,
although we will point out where we need to be careful.
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1.2 Motivation for Category Theory

What do groups G, topological spacesX and vector spaces V have in common? We use different
letters to describe them! Seriously, that is one major difference. Why? Because our brains are
organizational and thrive off of associations, e.g., G with group, X with topological spaces,
etc. This is great for thinking, but the mental separation of these constructions hides a bigger
picture.

Let’s look at what these things look like. With groups, we are often mapping between
groups via group homomorphisms. For example, below we have the chain complex of abelian
groups with boundary operator ∂n : Cn Cn−1, with the familiar property that ∂n ◦∂n−1 = 0.

Cn

Zn

Bn

Cn−1

Zn−1

Bn−1

Cn−2

Zn−2

Bn−2

∂n ∂n−1

∂n ∂n−1

0 0 0

· · · · · ·

A chain complex; the image of ∂n is Bn−1, while the kernel of ∂n is Zn.

Within topology, we are often mapping topological spaces via continuous functions.

f

A 2-simplex gets embedded into a manifold in R3.

With vector spaces, we often use linear transformations to map from one to another.
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T =




2 0
1 2
1 1




x

y

−x

−y

y

z

x

−y

−z

−x

Above we have T : R2 R3 as a linear transformation sending the various colored vectors in
R2 to the vectors in R3. The linear transformation itself is given above.

At some point when we’re learning different basic constructions in pure mathematics, we often
realize that we’re just repeating the same story over and over. The professor tells you about an
object (usually a set) equipped with some axioms. The next thing you learn are “mappings”
between such objects, which can abstractly be called morphisms. The characteristics of these
morphism are generally the following:
1. There’s an identity morphism.
2. There’s a notion of composition.
3. Composition is associative.
4. Composing identities in any order with a morphism returns the same morphism.

What is it that I just described? It sounds just like a monoid! In the most basic sense, a
monoid M = {x1, x2, . . . , } is a set of elements equipped with a multiplication map

· : M ×M M (x, y) 7! x · y

which is associative, and with a multiplicative identity e. With a monoid we see that
1. There’s an identity e.
2. There’s a notion of multiplication.
3. Multiplication is associative.
4. Multiplying e in any order with an element x returns x.
The concept of a monoid is one of the most underrated yet powerful concepts of mathematics,
and for some reason it’s usually ignored in algebra courses. It’s an innate, fundamental human
concept, a consequence of our physical reality. How many years have our ancestors been saying:
“Let’s stack stuff together and see what happens!” Stacking three things in two different ways
is the same. Stacking nothing is an “identity”. Thus what we see is that groups, topological
spaces and vector spaces are all similar in that (1) we have morphisms of interest and (2) the
morphisms behave like a monoid. This notion is what category theory takes care of.
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1.3 Category Theory Axioms.

Now we have an understanding of the fact that (1) there is no definitive foundation of mathe-
matics, and therefore that (2) there is no definitive category theory, but rather a definitive set
of axioms for categories. We also understand what things might look like under the axioms of
category theory.
Definition 1.3.1. A category C consists of

• a collection of objects Ob(C)
• a collection of morphisms between objects; for any objects A,B, we denote the mor-

phisms f : A B from A to B as HomC(A,B)

• a binary operator ◦ known as composition, such that for any objects A,B,C,

◦ : Hom(A,B)× Hom(B,C) Hom(A,C)
(f, g) 7! (g ◦ f)

Furthermore, the following laws must be obeyed.
(1) Identity. For each A ∈ Ob(C), there exists a distinguished morphism, called the identity

idA : A A in Hom(C).
(2) Closed under Composition. If A,B,C are objects, then for any f ∈ Hom(A,B), g ∈

Hom(B,C), there exists a morphism h ∈ Hom(A,C) such that h = g ◦ f .

A B C

h=g◦f

f g

(3) Associativity under Composition. For objects A,B,C and D such that

A B C D
f g h

we have the equality
h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(4) Identity action. For any f ∈ Hom(C) where f : A B we have that

1B ◦ f = f = f ◦ 1A.

At this point, the reader is assumed to have never seen a category or has at least some vague
idea. Therefore, any reasonable person would next introduce examples to clarify the above
abstract nonsense. There are two types of examples we can introduce: abstract and concrete
examples. We first introduce the three canonical examples, then three abstract examples. In
the next section we introduce a barrage of more complicated, but real examples of categories
in mathematics. The reader is at liberty to read the next two sections in order, in reverse, or
she can skip back and forth between them.
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Here we make a comment on notation. In what follows we are going to have to describe
categories. To describe them, we need to tell the reader (1) what the objects are (2) what
the morphisms are and (3) what composition is. Often times, (3) is implicit. Therefore our
preferred format of describing an arbitrary category C is using a bold-faced list. An example:

The category C consists of:
Objects. (Here we tell you what the objects of C are.)
Morphisms. (Here we tell you what the morphisms of C are.)

This is simply to avoid a lot of unnecessary words to describe a category (e.g. ”the objects of
this category are... the morphisms of this category are...”).

Example 1.3.2. The canonical example of a category is the category of sets, denoted as
Set, which we can describe as
Objects. All sets X.1
Morphisms. All functions between sets f : X Y .
Because most of mathematics is based in set theory, we shall see that while this is a fairly
simple category, it is one of the most useful.

A tip moving forward: When dealing with any abstract construction, it is a common
strategy to keep a “canonical example” of such an abstract construction in your head. For
many people, they often use Set as the image in their head when they imagine a category. This
is fine, but one should be cautioned: in general, categorical objects are not sets. Furthemore,
morphisms are in general not functions. This might be strange, but you will get used to it and
it will eventually become natural to you. The moral of the story is:

The canonical example of a category is Set, but in general the
objects of an arbitrary category C are not sets, and the morphisms
are not functions.

Example 1.3.3. The second canonical example is the category of groups, denoted as Grp.
This can be described as
Objects. All groups (G, ·). Here, · : G×G G is the group operation.
Morphisms. All group homomorphisms ϕ : (G, ·) (H, ·). Specifically, set functions ϕ :

G H where ϕ(g · g′) = ϕ(g) · ϕ(g′).
We again check this satisfies the axioms of a category.
(1) Each group (G, ·) has a identity group homomorphism idG : (G, ·) (G, ·) where idG(g) =

g.
1There’s a minor issue with saying this. We will address it, but not for now.
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(2) The function composition of two group homomorphisms ϕ : (G, ·) (H, ·) and ψ :
(H, ·) (K, ·) is again a group homomorphism where (ψ ◦ ϕ)(g) = ψ(ϕ(g)). This is
because

(ψ ◦ ϕ)(g · g′) = ψ(ϕ(g · g′))
= ψ(ϕ(g) · ϕ(g′))
= ψ(ϕ(g)) · ψ(ϕ(g′))
= (ψ ◦ ϕ)(g) · (ψ ◦ ϕ)(g).

(3) Function composition is associative; therefore, composition of group homomorphisms is
associative.

(4) If ϕ : (G, ·) (H, ·) is a group homomorphism, then idH ◦ϕ = ϕ ◦ idG = ϕ.
Therefore we see that this is a category. We will later see that this category possesses many
convenient and interesting properties.

Example 1.3.4. The third canonical example is the category of topological spaces, denoted
Top. We describe this as
Objects. All topological spaces (X, τ) where τ is a topology on the set X.
Morphisms. All continuous functions f : (X, τ) (Y, τ ′).
The reader can show that this too satisfies the axioms of a category.

We now consider some abstract examples. While abstract, they are nevertheless important
examples in their own right. They also illustrate that categories can be finite, which may
counter the intuition the reader might have of categories being “infinte.”

Example 1.3.5. In this example we introduce the three most basic categorical structures. The
first, and most important of the three, is the single object or initial category 1, which is
the category where:
Objects. A single object, abstractly denoted as •.
Morphisms. A single identity morphism id• : • •.
The identity of • does not matter; it is an abstract object. This is similar to how a one point
set is denoted as {∗} and we don’t really care what ∗ is.

The second category is the arrow category, denoted as 2, which we can describe as
Objects. Two objects • and •
Morphisms. Two identity morphisms id• : • • and id• : • • and one nontrivial morphism

f : • •.
Here we color our abstract objects to clarify that these objects are distinct.
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Finally, we have the category triangle category, denoted as 3, which can be describe as
Objects. Three distinct objects •, •, •
Morphisms. Three identity morphisms, and three nontrivial morphisms: f : • •, g : • •

and h : • •.
In this category, we define h = g ◦ f so that this is closed under composition. Note that if we
did not include the existence of h, then this would not be closed under composition, and hence
it would not even be a category.

We can picture all three categories as below.

•

id•
1

• •

id•

f

id•
2

•

• •

id•

g
id• f

g◦f

id•

3

Our first step in category theory has been introducing the axioms and showing some simple
examples. We now take our second step by moving on to more basic concepts of category theory
by making a few comments about categories.
Definition 1.3.6. Let C be a category. We say that C is

• Finite if there are only finitely many objects and finitely many morphisms.

• Locally Finite if, for every pair of objects A,B, the set HomC(A,B) is finite.

• Small if the collection of objects and collections of morphisms assemble into a set.

• Locally Small if HomC(A,B) is a set for every pair of objects A,B.

• Large if C is not locally small. That is, the objects and morphisms do not form a set.

Such terminology proves to be useful, since we have seen that categories come in different
sizes. For example, the categories 1,2, and 3 are finite categories. However, recall Russel’s
Paradox, so that the collection of all sets is not a set. Therefore, Set is a large category.

We now introduce the concept of a subcategory, which is also extremely useful to include in
our vocabularly.
Definition 1.3.7. Let C be a category. We say a category S is a subcategory of C if
(1) S is a category, with composition the same as C
(2) The objects and morphisms of S are contained in the collection of objects and morphisms

of C.
Furthermore, we say S is a full subcategory if we additionally have that
(3) For each pair of objects A,B ∈ S, we have that HomS(A,B) = HomC(A,B).
More informally, S is full if it “contains all of its morphisms.”
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Example 1.3.8. Let Ab be the category described as
Objects. All abelian groups (G, ·)
Morphisms. Group homomorphisms.
Then Ab is a subcategory of Grp. Futhermore, Ab is a full subcategory of Grp. This
observation also applies to

• FinGrp, the category of finite groups

• FindAb, the category finite abelian groups

• AbTF, the category of torsion-free abelian groups

However, none of these categories are subcategories of Set. In fact, many categories which
are based in set theory are not actually subcategories of Set. This is because the objects of
categories such as Grp or Top are not just sets, but are sets with extra data (such as a binary
operation or a topology).

Example 1.3.9. Let Ring be the category described as
Objects. Unital rings (R,+, ·). That is, rings R with a multiplicative identity 1 that is not

equal to its additive identity 0.
Morphisms. (Unit preserving) Ring homomorphisms ϕ : R R′. That is, functions ϕ :

R R′ such that

• ϕ(a+ b) = ϕ(a) + ϕ(b)

• ϕ(a · b)ϕ(a) · ϕ(b)

• ϕ(0R) = 0R′ and ϕ(1R) = 1R′ .

For a ring R we know that (R,+) is an abelian group, and we know that every ring homo-
morphism is technically a group homomorphism between abelian groups. However, it is not
the case that Ab is a subcategory of Ring. This is because while every ring is technically an
abelian group, abelian groups on their own are not rings.

We now introduce a convenient categorical construction which will serve to be useful to us
from here on out.
Definition 1.3.10. Let C,D be categories. Then we can form the product category where
we have that
Objects. Pairs (C,D) with C ∈ C and D ∈ D.
Morphisms. Pairs (f, g) where f : C C ′ and g : D D′ are morphisms in C and D.
To define composition in this category, suppose we have composable morphisms in C and D as
below.
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C

· · · C1 C2 C3 · · ·f

f ′◦f

f ′

D

· · · D1 D2 D3 · · ·g

g′◦g

g′

Then the morphisms (f, g) and (f ′, g′) in C × D are composable too, and their composition is
defined as (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

C × D

· · · (C1, D1) (C2, D2) (C3, D3) · · ·(f,g)

(f ′,g′)◦(f,g)=(f ′◦f,g′◦g)

(f ′,g′)

Note that we can form even larger products of categories; we don’t have to stop at two! But
this will be explored later. For now, we can just be happy with this new tool because it allows
us to be build new categories from the old ones that we already know.

Example 1.3.11. A useful example of a product involves the category Set×Set which we
can describe as
Objects. Pairs of sets (X, Y ).
Morphisms. Pairs of functions (f, g).
Such product constructions are useful because in general, algebraic operations of any kind
require a product. For example, to talk about a group (G, ·), one needs a binary operator, i.e.
a function · : G × G G. Hence to talk to generalize operations on categories, we need to
talk about products. For example, with Set×Set, we can talk about the product of two sets
as a mapping × : Set×Set Set where (A,B) 7! A×B.
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1.4 Examples of Categories

Now that we have some idea of basic categories and a few examples in mind on how they
work, we introduce more examples in this section to deepen our understanding. Categories are
extremely abundant in mathematics, so it is not difficult to find examples.

Without proof, we comment that the categories below truly form categories. To discuss
these categories, we will use the notation in the leftmost column.

Category Objects Morphisms
FinSet Finite sets X Functions f : X Y

VectK Vector spaces over k Linear transformations T : V W

Mon Monoids (M, ·) Monoid homomorphisms ψ : M M ′

FinGrp Finite Groups Group homomorphisms ϕ : (G, ·) (H, ·)
Ab Abelian Groups (G, ·) Group homomorphisms
FinAb Finite Abelian Groups (G, ·) Group homomorphisms
Ring Rings (R, ·,+) Ring homomorphisms ϕ : (R, ·,+)

(S, ·,+)
CRing Commutative Rings (R, ·,+) Ring homomorphisms
Ring Rings (R, ·,+) with identity 1 6= 0 Ring homomorphisms
R

mod
R-modules (M,+) R-module homomorphisms

Fld Fields k Field homomorphisms
Top∗ Topological spaces (X, x0) with

basepoint x0 ∈ X
Continuous functions preserving basepoints

Toph Topological spaces (X, τ) Homotopy equivalence classes
Haus Hausdorff topological spaces

(X, τ)
Continuous functions

CHaus Compact Hausdorff topological
spaces (X, τ)

Continuous functions

DMan Differentiable manifolds M Differentiable functions ϕ : M M ′

LieAlg Lie algebras g Lie algebra homomorphisms
Grph Graphs (G,E, V ) Graph homomorphisms

Now that we are aquainted with some of the categories that we’ll be working with, we’ll
introduce more interesting categories that become useful. However, these categories are less
trivial than the ones above, i.e it takes a bit of work to see how they form into categories.

Example 1.4.1. Let X be a nonempty set. We can regard X as a category where
Objects. All elements of X.
Morphisms. All morphisms are identity morphisms, and there are no morphisms between any

two distinct objects.
This category, while fairly trivial, is called a discrete category.
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Example 1.4.2. Consider any of the categories Mon, Grp, Ring, or R mod . For any object
of these categories, we can create the notion of a grading. Such a concept is a useful algebraic
construction which appears in different areas of mathematics. For simplicity, we’ll consider a
grading on a group.

A group G is said to be N-graded if there exists a family of groups G1, G2, . . . , Gn, . . . such
that G = ⊕

i=1Gi. An example of this is the group (R[x],+), the single variable polynomials
in one variable. To see that this is graded, observe that any polynomial p(x) is of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

Note that p(x) consists of “components”, i.e., different powers of x. If we let

Rn[x] = {axn | a ∈ R}

then we see that R[x] = ⊕
i=0 Rn[x].

More generally, if λ is an indexing set, we say a group G is λ-graded if there is a family of
groups Gi, i ∈ λ such that G = ⊕

i∈λGi. In addition, if G = ⊕
i∈λGi and H = ⊕

i∈λHi are two
graded groups such that ϕi : Gi Hi is a group homomorphism, then we say ϕ : G H is
a λ-graded homomorphism.

With that said, we can define the category of graded groups to be the category GrGrp,
(read as “graded groups”) described as
Objects. λ-graded groups G = ⊕

i∈λ for some set λ
Morphisms. Graded homomorphisms between graded groups.
As we said before, this produces many graded categories, includingGrMon,GrRing,GrModR
etc.

Example 1.4.3. A monoid is a set M equipped with an operation · : M ×M M and an
identity e such that e ·m = m · e = m for all m ∈M . In other words, monoids are like groups,
in that we drop the requirement of an inverse.

Let C be a category with one object; denote this object as •. As we have one object, we
have one homset. We can then interpret M as a category by setting

HomC(•, •) = M.

Thus each m ∈M corresponds to a morphism. So, we can write each morphism in the category
as fm : • • for some m ∈M . We then write fe = 1•, the identity, and more generally define



1.4 Examples of Categories 19

composition in the category as
fm ◦ fm′ = fm·m′ .

Since M is a monoid, and its multiplication is associative, we see that composition defined in
this way is also associative. Further, for each fm, we have that

fe ◦ fm = fm ◦ fe = fm

since e · m = m · e = m in the monoid M . Thus we can interpret monoids as one object
categories.

Definition 1.4.4. A category P is said to be thin or a preorder if there is at most one
morphism f : A B for each A,B ∈ P .

The simplest thin categories are of the form below

A B C · · ·
P

but they may also have more complex shapes such as the category below.

B C D

A

E F G

. . .. . .

. . .

. . .

...

...

P

Thin categories are very common since we often times only care about one single type of relation
between any two objects. An example of such a relation is a binary relation; for any two real
numbers x, y ∈ R, we know that either x ≤ y or y ≤ x.

This intuition is actually not very far off. Given a thin category P , define the binary relation
≤ on the objects Ob(P) as follows. For any pair of objects A,B ∈ P , we have that

A ≤ B if and only if there exists an morphism A B.

Some things are to be said about this relation:

• For each object A, there always exists a morphism A A (namely, the identity). This
implies that A ≤ A for all objects A, so that ≤ is reflexive.
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• If f : A B and g : B C, then we have that A ≤ B and B ≤ C. Since we may
compose morphisms, we have that g ◦ f : A C. Therefore, A ≤ C, so that ≤ ≤ is
transitive.

Hence, P is really just a set with a reflexive and transitive binary relation. However, this is
exactly the definition of a preorder! Therefore, preorders P can be regarded as categories with
at most one morphism between any two objects, and vice versa.

Preorders can also turn into partial orders, which have the axiom that

if p ≤ p′ and p′ ≤ p then p = p′.

or linear orders, where for any p, p′ we have that p ≤ p′ or p′ ≤ p.

Example 1.4.5. Here we introduce some examples of thin categories.
Natural Numbers. The sets {1, 2, . . . , n} for any n ∈ N are linear orders, each of which

forms a category as pictured below.

1 2 3 . . . n

In this figure, the loops represent the trivial identity functions.
This example can also be generalized to include N,Z,Q, and R.

Subsets. Let X be a set. Then one can form a category Subsets(X) where the objects are
subsets of X and the morphisms are inclusion morphisms. Hence, there is at most one
morphism between any two sets.
Since there is at most one morphism between any two objects of the category, we see that
this forms a thin category, and hence a partial ordering. What this then tells us is that
subset containment determines an ordering, specifically a partial ordering.

Open Sets. Let (X, τ) be a topological space. Define the category Open(X) to be the cate-
gory whose objects are the open sets ofX and morphisms U V are inclusion morphisms
i : U V whenever U ⊆ V . Hence, there is at most one morphism between any two
open sets, so that this also forms a preorder.

Subgroups. Let G be a group. We can similarly define the category SbGrp(G) to be the
category whose objects consists of subgroups H ≤ G, and whose morphisms are inclusion
homomorphisms. This is just like the last example; and, as in the last example, there
is at most one morphism between any two subgroups H,K of G (either i : H K or
i : K H). Hence, we can place a partial ordering on this, so that subgroup containment
is a partial ordering.

Ideals. Let R be a ring. Then we can form a category Ideals(R) whose objects are the ideals
I of R and whose morphisms are inclusion morphisms. As we’ve seen, this forms a thin
category.
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Example 1.4.6. Let Bn be the set of braids on n strands. Recall that Bn forms a group where
the group product is composition, and where the identity is simply n parallel strands. Each
braid group actually has a nice presentation:

Bn =
〈
σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσ

(1)
i+1, σiσj = σjσ

(2)
i

〉

where (1) holds only when 1 ≤ i ≤ n−2 and (2) hold only when |i− j| > 1. These two laws are
imposed so that they match our geometric intuition, so that if we were to replace the strands
with real, phyiscal ropes then they would behave the same way.

Each generator σi is interpreted as swapping the i-th strand over the (i+1)-th strand, while
σi is swapping the (i+ 1)-th strand over the i-th strand. Below are some example generators.

1 2

12

1 2

12

1 2 3

1 23

1 2 3 4

1 2 34
σ1 on two strands; σ−1 on two stands; σ2 on three strands; σ3 on four strands.

The reason why we care about these generators is because every braid can be expressed by
over and under crossings (although such an expression may not be unique). Now, the group
multiplication in this group is simply stacking of braids. For example, the braid

1 2 3

123

can be obtained by stacking σ1, σ2 and then σ1 again. Hence, the braid σ1σ2σ1.
Now with the family of braid groups B1, B2, . . . , we can form a category B as follows.

Objects. Positive integers 1, 2, . . . ,
Morphisms. For any pair of positive integers n,m, we have that

HomB(n,m) =



Bn if n = m

∅ n 6= m

Hence we only have morphisms f : n m when n = m. Furthermore, each morphism is a
braid. Composition is then group multiplication. The identity for each object n is the identity
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braid of n parallel strands. As group multiplication is associative, the composition in this
category is associative, so we see that this truly does form a category.

The following examples demonstrates again that morphisms are not always functions, or
mappings of some kind.

Example 1.4.7. Let R be a ring with identity 1 6= 0. For every pair of positive integers m,n,
let Mm,n(R) be the set of all m × n matrices. Now recall that for an m × n matrix A and a
n× p matrix B, the product AB is an m× p matrix.




a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn







b11 b12 · · · b1p

b21 b22 · · · b2p
... ... . . . ...
bn1 bn2 · · · bnp




=




c11 c12 · · · c1p

c21 c22 · · · c2p
... ... . . . ...
cn1 cn2 · · · cnp




where cij =
n∑

k=1
aikbkj. This can rephrased as saying that we have a multiplication map as

below.
Mm,n(R)×Mn,p(R) Mm,p(R)

Since matrix multiplication is associative, we can also say that the above mapping is associative.

This however should feel sort of similar to the process of composition, say for example in
Set, where if we have functions f : X Y and g : Y Z we obtain a function g◦f : X Z.
If we follow this intuition, we can consider a matrix A of shape m × n as a morphism from
m n. Similarly, B can be regarded a morphism from n p. This together implies that
AB is a morphism from m p. This should feel strange, because we are used to thinking of
a morphism as some kind of function. But it works; we can form a category where

Objects. The objects are positive integers m.
Morphisms. The morphisms are matrices. Specifically, for any pair of objects m,n,

HomC(m,n) = Mm,n(R).

Here, composition is simply matrix multiplication.

Observe now that our initial observation regarding matrix multiplication translates to a state-
ment regarding whenever two matrices A and B are "composable" (i.e., whenever we can multi-
ply them). That is, our mappingMm,n(R)×Mn,p(R) Mm,p can be rephrased as composition

◦ : HomC(m,n)× HomC(n, p) HomC(m, p)

Associativity of matrix multiplication translates to associativity of composition. Finally, note
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that for each object (positive integer) n, the identity morphism is simply the identity matrix.

1n := In =




1 0 0 · · · 0
0 1 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 1



.

Thus we see that we have all the necessary ingredients to declare this to be a category.

Example 1.4.8. Let G be a group, and recall that G is equipped with some binary operator
· : G×G G which satisfies associativity. Because this is a two-variable function on G every
g ∈ G induces a map

(−) · g := fg : G G

This then gives rise to a collection of maps fg : G G for each g ∈ G, which we can picture
as below.

G

fg1

fg2 fg3

fg4

In particular, if e ∈ G is the identity, then fe = 1G. Moreover, composition of these maps is
associative. Thus we can think of this as a category, specifically one with one object, whose
morphisms f : G G are induced by the elements g ∈ G. Also, note that each such map is
an isomorphism, since its inverse is given by (−) · g−1 : G G.

Now we can step up a level of generality. Let X be a set, and suppose we have a group
action ϕ : X ×G X. If we denote ϕ(g,−) := ϕh : X X for each g ∈ G, then since ϕ is a
group action we have that ϕg ◦ ϕg′ = ϕg·g′ and ϕe = 1X . Hence composition is associative and
we have a well-behaved identity morphism. Usually, when we draw group actions, we think of
something like this:

X

ϕg1

ϕg2 ϕg3

ϕg4
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What we’re seeing is that group actions can be phrased as a category with one object, with
morphisms as isomorphisms. This generalizes our previous discussion, which makes sense since
groups are trivial examples of group actions by setting X = G.

Exercises

1. Let n be a positive integer, and consider a group G such that gn = 1 for all elements
g ∈ G. Show that if we take these groups to be our objects, and group homomorphisms
to be our morphisms, then this forms a category Grpn.

2. Consider an infinite family of groups G1, G2, . . . , Gn, . . . Show that we have a category G
where

Objects. The positive integers 1, 2, . . . , n, . . .
Morphisms. For any two positive integers n,m, we define

HomG(n,m) =



Gn if n = m

∅ otherwise.

This example can be applied to many interesting families of groups, since they often
come graded (i.e., they often are indexed by the positive integers.) For instance, the
braid groups B1, B2, . . . , are such an example.

3. Let f : X Y be a function between two sets. We say f has the “finite-to-one” property
if f−1(y) is always a finite set for all y ∈ Y . Show that we have a (large) category, denoted
SetFTO, where

Objects. All sets X.
Morphisms. functions f with the finite-to-one property.

4. Let X and Y be sets. A binary relation R on X and Y is any subset of X × Y . For
two elements x ∈ X, y ∈ Y , we then write xRy if (x, y) ∈ R. Binary relations can be
specialized to describe functions and order relations in set theory.

Show that we can form a category where

Objects. All sets X.
Morphisms. For any two sets X, Y , we write, by abuse of notation, R : X Y as a

morphism for each relation R on X and Y .

This category is called Rel, to indicate that it is the category of relations.
Hint: Define composition in this category as follows. Suppose R : X Y is a relation on
X and Y and P : Y Z is a binary relation on Y and Z. Then the composite relation
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Q : X Z is given by

Q = {(x, z) | there exist y ∈ Y such that (x, y) ∈ R, (y, z) ∈ P}.

5. Recall that for a two metric spaces (M,dM) and (N, dN), where dM : M ×M M and
dN : N ×N N are the metrics, we say a function f : M N is a Lipschitz-1 map
with Lipschitz constant 1 if

dN(f(x), f(y)) ≤ dM(x, y)

for all x, y ∈M . Using this concept, show that we have a category where

Objects. Metric spaces M
Morphisms. Lipschitz-1 maps with Lipschitz constant 1.

This category is commonly denoted as Met.

6. Let G be a group. We say that G acts on a set X if we have a function ϕ : G×X X

such that

• e · x = x

• h · (g · x) = (hg) · x

Such an X is sometimes called a G-set. Note here that we represent ϕ(g, x) as g · x.
Now suppose X, Y are two sets for which G acts on. Then we define a morphism of G
sets to be a function f : X Y such that f(g · x) = g · f(x). Such a map is called G
equivariant. Show that we have a category G-Sets where

Objects. All G-sets (i.e., sets with a group action by G)
Morphisms. G equivariant maps.
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1.5 Paths and Diagrams in Categories

In this section we give an overview of the concept of a path and of a diagram within a category,
which are concepts that are exactly what they sound like. This is usually a discussion that is
usually glossed over, which is a huge mistake since diagrams are used everywhere in mathemat-
ics. They’ll appear in nearly every section from this point on, and any good book on category
theory will have dozens of diagrams. In short, they are extremely indespensible.

So, we set off to do a justice to the important concepts of paths and diagrams. However,
I’ve kept the pragmatic reader in mind and have avoided making this discussion abstract and
irrelevant.

First, we form some intuition on what exactly a diagram is. Informally, a diagram in a
category C consists of a finite sequence of arrows between objects. Below are some diagrams.

A B

C D

ϕ

σ ψ

τ

Y

X Z

g

g◦f

f

We can also have more complicated diagrams such as the diagrams below.

V V1

V2

V3
V4

V5

V6

V7

A1 B1

A2 B2

A3 B3

A4 B4

Of course, a diagram does not really mean anything on its own; it is simply a graph2. A diagram
requires the context of a category to have any meaning. Despite this, we can still abstract the
core ingredients of what a diagram really is for a general category C. To do so requires observing
that in the diagrams above (which are the ones we care about), there are certain paths given
by iterated composition. Thus we start at this concept and build upwards to define a diagram.
Definition 1.5.1. Let C be a category and consider two objects A and B. A path p in C of
length n from A to B consists of

• distinct objects A1, A2, . . . , An+1 with A1 = A and An+1 = B

• a chain of morphisms f1 : A1 A2, . . . , fn : An An+1

2Technically, since a diagram can have multiple morphisms between two objects, every diagram is a “quiver.”
This is explored more in Chapter 2.
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and we say p = fn ◦ · · · ◦ f1. If two paths p = fn ◦ · · · f1 and q = gm ◦ gm−1 ◦ · · · ◦ g1 start and
end at the same objects A and B, we say p and q are parallel paths.

For example, we have a path of length five from A1 to A6 in some category C displayed
below in blue.

C

A1

A2

A3

A4

A5

A6

· · ·

· · ·

Note that in the above picture, we will in general have many possible paths between two
different objects. We now face the question: is there a way to organize this data without getting
too complicated?

To answer that question, we must work with a small category in order to avoid contradictions
that arise due to size issues in set theory. With that said, we propose the following definition.
Definition 1.5.2. Let C be a small category. For any two objects A,B, and for any positive
integer n, define the path set of order n from A to B as

Pathn(A,B) = {all paths p : A B of length n}.

The above definition makes sense, but admittedly it is not illuminating. Is there another
perspective we can make from this?

Yes! Because paths are made of components which are inherently ordered, one way to
imagine a path is as a tuple (f1, . . . , fn) of n-morphisms where the codomain of fi is the
domain of fi+1. In other words, a path from A to B is an element of

Hom(A,A1)× Hom(A1, A2)× · · · × Hom(An, B).

for some objects A1, . . . , An in C. Therefore, we can say that

Pathn(A,B) =
⋃

A1,...An∈Ob(C)
Hom(A,A1)× Hom(A1, A2)× · · · × Hom(An, B).

where in the above union we vary across all objects A1, . . . , An ∈ Ob(C). Note that when
n = 1, we have that Pathn(A,B) = Hom(A,B). In this way, the path set can be thought of as
a generalized hom-set.
Definition 1.5.3. A simple diagram J in a category C consists of two distinguished objects
A and B, referred to as the source and target of J , and any finite collection of parallel paths
p1 : A B, p2 : A B, . . . , pn : A B of any length.
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Some simple diagrams are pictured below. In the first diagram, the source and targets are
X and Z; in the second, they are A and F ; in the third, they are V and V7.

Y

X Z

A B C

D E F V V1

V2

V3
V4

V5

V6

V7

In many situations, simple diagrams are what we really care about. This is because often times
we have two objects of interests, and we consider many possible paths between them. And in
those situations, we are generally asking: are all such paths equivalent?

This is something high schoolers ask themselves all the time, and a mistake they make all
the time. Let n ≥ 2. Consider the functions

• e : N N where f(a) = an (e for exponent)

• p : N× N N where f(a, b) = a+ b (p for plus)

Often times, they get confused and think that the paths of the diagram below are equivalent.

N× N N

N× N N

p

(e,e) e

p

(a, b) a+ b

(an, bn) an + bn = (a+ b)n

Sadly, this equation does not hold generally, and the two paths of the diagram are not equivalent.
Thus at this point we introduce terminology for discussing when paths are equivalent.
Definition 1.5.4. Let J be a simple diagram in C. If every parallel path is equal, then we say
J commutes and is a commutative diagram.

At this point, we should note that there is still some work to be done, since of course not
all “diagrams” that we care about are simple. For example, an extremely important diagram
that will eventually become engrained in your brain is pictured below on the left.3

Z

X X × Y Y

f g
h

π1 π2

z

f(z) h(z) = (f(z), g(z)) g(z)π1 π2

3Understanding this diagram right now is not important; there is a lot more stuff one needs to learn before
we get into what this means. Long story short, it is the universal property of a product.
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Here, the objects are sets, and the morphisms are functions; the underlying function maps are
pictured above on the right.

Clearly this diagram is not simple. However, note that it is built from simple diagrams;
specifically, the left and right triangles are simple diagrams. At this point, it is clear that the
task of rigorously defining the notion of a diagram is reduced to defining what exactly we mean
by “building” such diagrams.

Exercises

1. Consider a category C with objects A,A0, . . . , An, B,B0, B1, . . . , Bm. Let A0 = B0 = A

and An = Bm = B, and suppose we have a family of isomorphisms fi : Ai−1 −!∼ Ai and
gi : Bi−1 −!∼ Bi as below.

f1

f2
f3

fn

A

A1
A2

· · ·

B

g1

g2
g3

g`

B1
B2

· · ·

Suppose we have another object C and isomorphisms ϕi : Ai −!∼ C, ψi : Bi −!∼ C with
ψ0 = ϕ0 and ϕn = ψm. Prove that if ϕi ◦ fi = ϕi+1 and ψi ◦ gi = ψi+1, then the above
diagram is commutative in C.
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1.6 Functors

At this point, we really have no significant reason to care about categories. They have only
so far proved to be an organizatonal tool for concepts of mathematics, but that is about it.
In this section, we introduce the abstract notion of a functor which is prevalent everywhere in
mathematics. Functors are ultimately a helpful notion which we care a lot about, but in order
to define a functor we first needed to define categories. But as we have defined categories, we
move on to defining functors.
Definition 1.6.1. Let C and D be categories. A (covariant) functor F : C D is a
“mapping” such that

1. Every C ∈ Ob(C) is assigned uniquely to some F (C) ∈ D
2. Every morphism f : C C ′ in C is assigned uniquely to some morphism F (f) : F (C)
F (C ′) in D such that

F (1C) = 1F (C) F (g ◦ f) = F (g) ◦ F (f)

If you have seen a graph homomorphism before, this definition might seem similar. This
is no coincidence, and we’ll see later on what the relationship between categories and graphs
really are. But with that intuition in mind, we can visualize the action of a functor. Below we
have arbitrary categories C, D, and a functor F : C D.

C

· · · · · ·

· · · · · ·

...

... ...

A

B C

f g◦f

g

D

· · · · · ·

· · · · · ·

...

... ...

F (A)

F (B) F (C)

F (f) F (g◦f)

F (g)

In what follows, we offer some simple and abstract examples that can get us familiar with
the behavior of functors. In the next section, we do the opposite, and instead use our abstract
understanding of functors to witness functors in real mathematical constructions4.

Example 1.6.2. Denote 1 as the category with one object • and one identity morphism
1• : • •. Then for any category C, there exists a unique functor F : C 1 which sends
every object to • and every morphism to 1•.

4I chose to separate this section and the next to ease the learning curve for functors; both perspectives are
necessary for true understanding of a functor.
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Conversely, there are many functors F : 1 C. Since we only have F (•) = A for some
A ∈ C, and F (1•) = 1A, we see that this functor simply picks out one element of C. So these
functors are in correspondence with the objects of C; the picture below may help.

1

•

1• C

...
· · · · · ·A

1A

Example 1.6.3. Let 2 be the category with two objects • and • with one nontrivial f : • •.
The category can be pictured as below.

2

• •

1•

f

1•

Suppose now that C is an arbitrary category, and that we have a functor F : 2 C. Then note
that F (•) = A and F (•) = B for some objects A,B ∈ C. Hence we have that F (f) = ϕ : A B

for some ϕ ∈ C. Below we have the functor pictured.

2

• •f

C ...

...

...

...
· · · · · ·A B

ϕ

Note we suppressed the identity morphisms. Therefore, we see that this functor simply picks
out morphisms ϕ : A B in C. So we can say that functors F : 2 C are in correspondence
with the morphisms of C.

Consider the very first figure of this section, Figure ??. In that image we saw three objects
A,B,C get sent to F (A), F (B), F (C). However, the original commutative diagram involving
f, g and g ◦ f was translated into another commutative diagram in D involving F (f), F (g) and
F (g ◦ f). This is because of the critical property F (g ◦ f) = F (g) ◦F (f) given by a functor. In
fact, any commutative diagram translates to a commutative diagram under a functor.
Proposition 1.6.4. Let C,D be categories with F : C D a functor. Suppose J be a
commutative diagram in C. Then the diagram obtained from the image of J under F , which
we denote as F (J), is commutative in D.
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Proof. It suffices to prove that, for any complete subdiagram J ′ of J involving any two distinct
paths

p = fn ◦ fn−1 ◦ · · · ◦ f1 q = gm ◦ gm−1 ◦ · · · ◦ g1

in J , we have that F (J ′) is commutative in D. But this immediate. Since J ′ is commutative
in C, we have that p = q. Hence we see that

F (p) = F (q) =⇒ F (fn) ◦ F (fn−1) · · ·F (f1) = F (gm) ◦ F (gm−1) ◦ · · · ◦ F (g1).

by repeatedly applying the composition property of a functor. Hence F (J ′) is commutative
of J . Since �

Finally, before we move onto the next section and introduce various examples of functors
across mathematics, we introduce one of the most important functors in basic category theory.

Example 1.6.5. Let C be a locally small category. Then for every object A, we obtain the
covariant hom-functor denoted as

HomC(A,−) : C Set .

where on objects C 7! HomC(A,C) and on morphisms (ϕ : C C ′) 7! ϕ∗ : HomC(A,C)
HomC(A,C ′)) where ϕ∗ is a function defined pointwise as

ϕ∗(f : A C) = ϕ ◦ f : A C ′.

Such a functor is naturally of interest in mathematics since it is often of interetst to consider
the hom set HomC(A,B) for some objects A,B in a category C, as it is usually the case that
this set contains extra structure. For example, within topology this set is always a topological
space, since families of continuous functions can be endowed with the compact open topology.
In the setting of abelian groups, this set also forms an abelian group. Much of category theory
can actually be done by simply “enriching” hom sets of a category with some extra structure;
this is the object of enriched category theory, which we’ll introduce later.

This functor in general also exhibits nice properites. For example, let R be a ring. Then
the sequence below

0 M1 M M2
ϕ ψ

is exact if and only if, for every R-module N , the sequence

0 Hom(N,M1) Hom(N,M) Hom(N,M2)ϕ∗ ψ∗

is exact. This result even extends to split short exact sequences. We also have that for R-
modules N , M1,M2 that

Hom(N,M1 ⊕M2) ∼= Hom(N,M1)⊕ Hom(N,M2).
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This result also holds for arbitrary direct sums, so that the hom functor distributes over all
direct sums. Even better, we cannot forget that the hom-functor exhibits the tensor-hom
adjunction which states that for R-modules N,M1,M2

Hom(N ⊗M1,M2) ∼= Hom(N,Hom(M1,M2)).

More is to be said about this property; we’ll later see that this is an example of an adjunction.
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1.7 Examples and Nonexamples of Functors

Functors were not defined out of arbitrary interest. The definition of a functor was motivated by
constructions that were seen in mathematics (unlike constructions in say, number theory, which
are interesting in their own right). Thus in this section, we include a wide variety of different
constructions in in different areas of mathematics which all fit the definition of a functor. We
present examples from algebraic topology, differential geometry, topology, algebraic geometry,
abstract algebra and set theory.

In short, this section is due to the fact that the only way to really understand what a functor
does is to realize the definition with examples. It’s not necessarily important to understand all
the examples, if for instance you have never worked with differential geometry, but it would be
good to get a few of them. What is more important is witnessing how such a simple definition
can be so versatile and prevalent in seemingly different fields of mathematics; thus, what is
important is witnessing the flexibility of functors (in addition to filling in the details of the
examples and doing the exercises at the end).

Algebraic Geometry.

Example 1.7.1. In algebraic geometry, it is often of interest to construct the affine n-space
An(k) of a field k. Usually, k is an algebraically closed field, but it doesn’t have to be.

An(k) = {(a0, . . . , an−1) | ai ∈ k}.

For example, when k = R, we have that An(k) = Rn. Moreover, we claim that we have a
functor An(−) : Fld Set. To see this, we need to figure out where An(−) sends objects and
morphisms.

We can first observe that An(−) sends fields k to sets An(k). Secondly, we can observe that
for a field homomorphism ϕ : k k′, we can define the function An(ϕ) : An(k) An(k′)
where for each (a1, . . . , an) ∈ An(k) we have that

An(ϕ)(a0, . . . , an−1) = (ϕ(a0), . . . , ϕ(an−1)).

The reader can show that this satisfies the rest of the axioms of a functor. Overall, we can say
that we have a functor

An(−) : Fld Set .

Example 1.7.2. Once the affine n-space is defined, the next step in algebraic geometry is to
construct the projective space P n(k) for a field k. To define this, we first define an equivalence
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relation on An+1(k). We say

(a0, . . . , an) ∼ (b0, . . . , bn) if there is a nonnzero λ ∈ k such that ai = λbi.

This defines an equivalence relation on the points of An(k). Geometrically, this equivalence
relation says two points are equivalent whenever they lie on the same line passing through the
origin. With this equivalence relation, we then define

P n(k) = An+1/ ∼=
{

[(a0, . . . , an)] | (a0, . . . , an) ∈ An+1(k)
}
.

Hence we see that P n(k) is the set of equivalence classes under this equivalence relation. Similar
to the previous example, this construction is also functorial. Consider a field homomorphism
ϕ : k k′. Then we define the function P n(ϕ) : P n(k) P n(k′) where

P n(ϕ)([a0, . . . , an]) = [(ϕ(a0), . . . , ϕ(an))].

However, when defining functions on a set of equivalence classes, we need to be careful. It’s
possible that the function could send equivalent objects to different things, so that such a
fuction would not be well-defined. In this case, the above function is in fact well-defined. This
is because ϕ(λai) = ϕ(λ)ϕ(ai) for any i = 0, 1, . . . , n. Therefore we can state that we have a
functor

P n(−) : Fld Set .

Algebraic Topology.

Example 1.7.3. An important example of a functor arises in homology theory. For example,
in singular homology theory, one considers a topological space X and associates this with its
n-th homology group.

X 7! Hn(X)

In a typical topology course, one then proves that if f : X Y is a continuous mapping
between topological spaces, then f induces a group homomorphism

Hn(f) : Hn(X) Hn(Y )

in such a way that for a second mapping g : Y Z, Hn(g ◦ f) = Hn(g) ◦ Hn(f) for all n.
Finally, we also know that Hn(1X) = 1Hn(X). Therefore, what we see is that this process can
be cast into the language of category theory, so that we may define a singular homology
functor

Hn : Top Ab
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since this functorial process sends topological spaces in Top to abelian groups in Ab.

Example 1.7.4. Another example from algebraic topology can be realized from the funda-
mental group

π1(X, x0) = {[x] | x ∈ X}
with x0 ∈ X, and where [x] is the equivalence class of loops based at x0, subject to the homotopy
equivalence relation. First observe that X 7! π1(X) is in fact a mapping of objects between
Top∗ and Grp. Second, observe that if f : X Y is a continuous function, then we can
define a group homomorphism

π1(f) : π1(X) π1(Y ) [x] 7! [f(x)].

Note that this is well defined since if x ∼ x′ then there is a homotopy relationH : X×[0, 1] Y .
However, f ◦H is also another homotopy relation that establishes that f(x) ∼ f(x′); hence our
group homomorphism is well defined.

Moreover, if f : X Y and g : Y Z are continuous, then we can check that π1(g ◦ f) =
π1(g) ◦ π1(f); if [α] ∈ π1(X, x0), then

(g ◦ f)∗([α]) = [(g ◦ f) ◦ α] = [g ◦ (f ◦ α)] = g∗([f∗([α])]) = g∗ ◦ f∗([α])

so that (g ◦ f)∗ = g∗f∗. Finally, we can examine how the identity map 1X on a topological
space acts on an element [α] ∈ π1(X, x0):

id∗([α]) = [id ◦ α] = [α].

so that it is sent to the identity homomorphism. All together, this allows us to conclude that
this process is entirely functorial, so we may summarize our results by stating that

π1 : Top∗ Grp

is a functor.

We now present two examples from differential geometry, which aren’t traditionally pre-
sented as examples of functors but are nevertheless interesting in their own right.

Differential Geometry.

Example 1.7.5. Let Mn be a differentiable manifold of dimension n. In general, this means
that there exists a family of open sets Uα ⊆ Rn and injective mappings xα : Uα M for α ∈ λ,
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λ an indexing set, with the mappings subject to various conditions5. Recall from differential
geometry that we can associate each point p ∈ Mn with its tangent space Tp(M), in the
following manner.

Suppose for α′ ∈ λ we have that xα : Uα M is a mapping whose image contains p (such
an α′ must exist). Then Tp(M) has a basis

{
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

}

where ∂

∂xi
is the tangent vector of the map ci : U M , which simply sends (0, . . . , 0, xi, 0, . . . , 0).

Now suppose ϕ : Mn
1 Mm

2 is a differentiable mapping. Recall that the differential of ϕ
establishes a linear transformation between the vector spaces:

dϕp : T : Mn
1 Tϕ(p)M

m
2 .

Consider the category DMan∗ whose objects are pairs (Mn, p) with Mn a differentiable man-
ifold and p ∈ Mn. The morphism are (ϕ, p) : (Mn

1 , p) (Mm
2 , q) with ϕ : Mn

1 Mm
2

a differentiable map and ϕ(p) = q. Then this process may be summarized as a functor
Tp : DMan∗n VectR where

T : (M, p) = Tp(M)
T (ϕ : (Mn

1 , p) (Mm
2 , ϕ(p))) = dϕp : Tp(M) Tϕ(p)M

m
2

One can show that the identity map is sent to the identity linear transformation on Tp(M) and
that the differential respects composition, so that that the association of a manifold M (with
a specified point p ∈M) to its tangent space Tp(M) gives rise to a functor

Tp : DMan∗ VectR .

Example 1.7.6. Consider again a differentiable manifold Mn of dimension n. Recall that we
may consider the tangent bundle TM of M , which is the set

TM = {(p, v) | p ∈Mn and v ∈ Tp(M)}.

The set TM simply pairs each point p ∈ Mn with its tangent space Tp(M). However, TM is
more than such a set; it inherits the structure of a differentiable manifold from M as well. In
fact, it is a manifold of dimension 2n.

5There isn’t a universally agreed upon set of conditions, and we won’t really need to worry about them here.
If the reader likes, they can consult Do Carmo’s Riemannian Geometry, which is, and has been for a long time,
the go-to differential geometry text.
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Now suppose we have a differentiable mapping ϕ : Mn
1 Mm

2 . Then this induces a mapping

(ϕ, dϕ) : TM2n
1 TM2m

2

(ϕ, dϕ)(p, v) = (ϕ(p), dϕp(v)).

One can show that (ϕ, dϕ) : TM2n
1 TM2m

2 is a differentiable mapping between manifolds6

At this point we may guess that we have a functor TB : DMan DMan (“TB” for “tangent
bundle”) where

TB(Mn) = TM

TB(ϕ : Mn
1 Mm

2 ) = (ϕ, dϕ) : TM2n
1 TM2m

2 .

To check this, we first observe that TB(1Mn) = 1TM2n . Next, suppose ϕ : Mn
1 Mm

2 and
ψ : Mm

2 Mp
3 , and observe that

TB(ψ ◦ ϕ) = (ψ ◦ ϕ, dψ◦ϕ) = (ψ, dψ) ◦ (ϕ, dϕ) = TB(ψ) ◦ TB(ϕ).

Note that above in the second step, we used the fact that dψ◦ϕ = dψ ◦ dϕ, which we know is
true from the previous example. As TB respects the identity and composition, we see that we
do in fact have a functor

T : DMan DMan

as desired.

Topology.

Example 1.7.7. Let X be a set. Recall that we can turn X into a topological space (X, τd),
where τ (X)

d is the discrete topology, so that every subset of X is an open set. We claim that
this process is functorial, so that we have a functor

D : Set Top .

This is because any function f : X Y extends to a continuous function f : (X, τ (X)
D )

(Y, τ (Y )
D ) (hopefully the abuse of notation in f is forgivable here). Hence this defines a functor,

although in a simpler way than we’ve seen in the previous examples.

Example 1.7.8. Let (X, τ) be a topological space and consider any x0 ∈ X. Then (X, x0)
6I wanted to show this here, but it turned out to be just tedious definition-checking, so I don’t think it’s

appropriate to include here (perhaps I could make/put it in an appendix...)
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forms an element of Top∗. With such a space, we can consider the loop space of (X, x0)
defined to be

Ω(X) = {ϕ : S1 X | ϕ is continuous and ϕ(0) = x0}.
Here S1 is the circle. As this consists of a family of continuous functions between two topological
spaces, it can be endowed with the Compact Open topology to turn it into a topological space
as well. Hence we claim we have a functor

Ω : Top∗ Top .

To see this, one needs to first consider a morphism in Top∗, which in this case is continuous
function f : (X, x0) (Y, y0) such that f(x0) = y0. This must then correspond with a
continuous function Ω(f) : Ω(X) Ω(Y ). We can define this function pointwise: for each
continuous ϕ : S1 X such that ϕ(0) = x0, we have that Ω(f)(ϕ) = f ◦ ϕ : S1 Y . In this
case we see that (f ◦ ϕ)(0) = y0, and is a continuous function, so it is well-defined.

This example can be further generalized to higher loop spaces which consider continuous
functions ϕ : Sn X, rather than just having n = 1.

Algebras, Rings, Groups.

Example 1.7.9. Recall that a Lie Algebra g is a vector space g (over a field k), equipped
with a bilinear operation [−,−] : g× g g such that

1. [x, y] = −[y, x]

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Condition (2) is referred to as the Jacobi identity, and many familiar operations on vector
spaces satisfy (1) and (2). For example, the cross product on vector spaces in R3 satisfy these
properties.

Consider an associative algebra A over a field k with (associative); recall that this too
has a bilinear operation · : A × A A with unit e ∈ A. Then we can use A to create a
Lie algebra L(A), whose (1) underlying vector space is A and (2) whose bilinear operation is
[a, b] = a · b− b · a.

Now suppose ϕ : A A′ is a morphism of algebras. Then we can associate both A,A′

with their Lie algebras L(A), L(A′). Further, we can construct a Lie Algebra morphism L(ϕ) :
L(A) L(A′), using ϕ, by setting L(ϕ)(a) = ϕ(a). This is a morphism of Lie algebras since

[ϕ(a), ϕ(b)] = ϕ(a)ϕ(b)− ϕ(b)ϕ(a) = ϕ(ab− ba) = ϕ([a, b]).

One can then check that L(1A) = 1L(A) and L(ϕ ◦ ψ) = L(ϕ) ◦L(ψ), so that what we have is a
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functor
L : Alg LieAlg

which associates each associative algebra with its Lie algebra structure.

Example 1.7.10. Let R be a commutative ring. Recall that Spec(R) is the set of all prime
ideals of R. In addition, recall that if ϕ : R S is a ring homomorphism and if P is a prime
ideal of S, then ϕ−1(P ) is also a prime ideal in R. This then allows us to define a functor

Spec : Ring Set

where on objects R 7! Spec(R) and on morphisms ϕ : R S 7! ϕ∗ : Spec(S) Spec(R)
where ϕ∗(P ) = ϕ−1(P ).

However, we can go even deeper than this. Recall from algebraic geometry that Spec(R)
can be turned into a topological space, using the Zariski topology. However, because ϕ−1(P )
is a prime ideal whenever P is, we see that ϕ∗ : Spec(S) Spec(R) is actually a continuous
function between the topological spaces. Hence we can view this as a functor

Spec : Ring Top .

Usually this is phrased more naturally as a functor Spec : Ring Sch where Sch is the
category of schemes; this is simply because schemes are isomorphic to Spec(R) for some R.

Example 1.7.11. Let G be a group, and R be a ring with identity. Recall from ring theory
that we can form the group ring

R[G] =



∑

g∈G
agg | ag ∈ R, all but finitely many ag = 0



 .

Thus the elements are finite sums, but we have possibly infinitely many ways of adding them.
Now for two elements α =

∑

g∈G
akg and β =

∑

g∈G
bgg, we define ring addition and multiplication

as
α + β =

∑

g∈G
(ak + bk)g α · β =

∑

g∈G

∑

g1·g2=g
(ag1bg2)g.

Now suppose ϕ : G H is any group homomorphism. With that said, we claim that ϕ induces
a natural ring homomorphism ϕ∗ : R[G] R[H] between the group rings, where

∑

g∈G
agg 7!

∑

g∈G
agϕ(g).
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Clearly this is linear and preserves scaling; less obvious is if this behaves on multiplication,
although we check that below. If α, β defined as above then

ϕ∗(α·β) = ϕ∗


∑

g∈G

∑

g1·g2=g
(ag1bg2)g


 =

∑

g∈G

∑

g1·g2=g
(ag1bg2)ϕ(g) =

∑

g∈G
agϕ(g)·

∑

g∈G
bgϕ(g) = ϕ∗(α)·ϕ∗(β).

Hence we see that ϕ∗ is a ring homomorphism. Therefore, what we have on our hands is a
functor

R[−] : Grp Ring

Possibly, your brain may wonder: it looks like we have an assignment of rings to functors.

R 7! R[−] : Grp Ring .

Perhaps this process is functorial? The answer is yes, although at the moment we don’t have the
necessary language to describe it; we will go over this when we introduce functor categories.

Set Theory

Example 1.7.12. Consider the power set P(X) on a set X. Then we can create a functor
P : Set Set as follows.

Observe that for any set X, P(X) is of course another set. Therefore objects of Set are
sent to Set, as we claim.

Now let f : X Y be a function between two sets X and Y . Then we define P(f) :
P(X) P(Y ) to be the function where

P (f)(S) = {f(x) | x ∈ S}.

which is clearly in P(Y ). Now we must show that this function respects identity and composition
properties.

Identity. Consider the identity function idX : X X on a set X. Then observe that for any
S ∈ PX, we have that

P(idX)(S) = {idX(x) | x ∈ X} = S.

Therefore, P(idX) = 1PX so that P respects identities.
Composition. LetX, Y, Z be sets and f : X Y and g : Y Z be functions. Let S ∈ P(X).
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Observe that

P(g ◦ f)(S) = {(g ◦ f)(x) | x ∈ S}
= {g(f(x)) | x ∈ S}
= {g(y) | y = f(x) and x ∈ S} = P(g)({f(x) | x ∈ S})
= P(g)(P(f)(S))
= (P(g) ◦ P(f))(S).

Therefore we see that P(g ◦ f) = P(g) ◦ P(f), so that P describes a functor from Set to
Set.

As we just encountered a mass of different examples of functors from different fields, one
might wonder: are there other mathematical constructions which simply do not behave exactly
as a functor? The answer is yes, although finding these examples is a bit tricky. The following
is a well-known example, while the one after is one I haven’t seen presented elsewhere.

Non-functor Examples.

Example 1.7.13. Recall from group theory that, with every group G, there is an associated
subgroup of G called the center:

Z(G) = {z ∈ G | zg = gz for all g ∈ G}.

By definition, Z(G) is an abelian group. As every group G may be associated with an abelian
group Z(G), one might expect that this process is functorial. One might prematurely denote
this as

Z : Grp Ab .

However, this is not a functor, as an issue arises with the morphisms. Consider a group
homomorphism ϕ : G H. Then for this to be a functor, we’d naturally desire a group
homomorphism Z(ϕ) : Z(G) Z(H) between the abelian groups. The only issue is that
there is no consistent way to define such a morphism from ϕ. The most natural way we would
attempt to achieve this is by considering the restriction, but in general ϕ

∣∣∣
Z(G)

: G H does
not map into Z(H). For example, consider the Heisenberg Group

H3(R) =








1 a b

0 1 c

0 0 1




∣∣∣∣∣∣
a, b, c ∈ R





where R is a commutative ring with identity. Observe that we can create an inclusion group
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homomorphism i : H3(R) GL3(R). One can show that

Z(H3(R)) =








1 0 a

0 1 0
0 0 1




∣∣∣∣∣∣
a ∈ R





Z(GL3(R)) =







a 0 0
0 a 0
0 0 a




∣∣∣∣∣∣
a ∈ R




.

Hence restricting the inclusion i : H3(R) GL3(R) to Z(H3(R)) results in a group homomor-
phism that does not even hit Z(GL3(R)) (except of course when a = 0). Thus there is not a
general way to relate these two quantities in a functorial fashion.

What follows is a second example in which a process which may appear to be functorial
does not turn out to be. It can, however, be adjusted to become a functor.

Example 1.7.14. Let X be a set. Recall from topology that we can treat X as a topological
space by associating to it the finite complement topology:

τXFC = {U ⊆ X | X − U is finite.}

With that said, one may suppose that we have a functor FinC : Set Top where X 7!
(X, τXFC). This would require that each function f : X Y extends to a continuous function
f : (X, τXFC) (Y, τYFC). However, for such a function to be continuous we would need that

if Y − V is finite then X − f−1(V ) is finite.

In general, this is not true. For example suppose X is infinite and Y is finite. Then Y − ∅ is
finite, but X − f−1(∅) = X is infinite. Hence this cannot define a functor F : Set Top.

Exercises

1. (i.) Let X and Y be two sets. Regard each set as a discrete category. Interpret what a
functor F : X Y means in this case.

(ii.) Let G and H be two groups. Regard each group as a one-object category whose
morphisms sets correspond to their group elements, with composition their group
product. Interpret what a functor F : G H means in this case.

(iii.) Let X and Y be a pair of thin categories. Interpret what a functor F : X Y

means in this case. (Use (i) to get you started.)

2. Let G be a group. Then for any two elements a, b ∈ G, we define the commutator of
a, b to be the element

aba−1b−1.
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Define [G,G] to be the set

{x1x2 · · ·xn | n ∈ N, xi is a commutator in G}

which we call the commutator subgroup. Its underlying set consists of all possible
products, with factors that are of the form aibia

−1
i b−1

i . One can show that [G,G]EG for
any group G, which implies that we may discuss the quotient group G/[G,G], which is
abelian in this case.

So, show that we have a functor F : Grp Ab where

F (G) = G/[G,G]

Deduce the action of F on the morphism of Grp (i.e., the group homomorphisms.) and
show that it is well-defined.

3. Let R be a unital ring. Recall that GLn(R) is the group consisting of n×n matrices with
entries in K. Show that this construction more generally is that of a functor

GLn : Ring Grp .

In addition, with such a ring R, we may associate it with its group of units R×, which
you may recall is

R× = {u ∈ R | ur = ru = 1 for some r ∈ R}.
Show that this also defines a functor

(−)× : Ring Grp .

We will see in the next section that there is an interesting relationship between these two
functors.

4. Recall the category SetFTO is the category whose objects are sets and whose morphisms
are functions with the finite-to-one property (See Exercise 1.3.3). While we saw that
FinC : Set Top where

X 7! (X, τXFC)

does not define a functor, show that upon changing the domain category from Set to
SetFTO, it does define a functor FinC : SetFTO Top.

5. (i.) Let X = {x1, x2, . . . , xn} be a finite set. With such a finite set, we can pick a field
k and build X into a finite-dimensional vector space VX over k. Explicitly, we can
create the vector space

VX = {c1x1 + · · ·+ cnxn | ci ∈ k}.
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We define addition in the intuitive way of adding coefficients of the same basis, so
this is truly a vector space. Note that when k = R, we get that VX ∼= Rn.

Prove that this process is functorial. That is, show that the functor

F : FinSet Vectk F (X) = VX

is a functor.

(ii). From any set X, we may construct the free group F (X) generated by X. The
elements of F (X) are (1) the elements of X, (2) a new element e, and (3) all elements
xy whenever x, y ∈ X. In this way, F (X) is a group with the product being string
concatenation, and we require that xe = x = ex. . Below, two words (elements of
F (X)) are combined.

(x2yz−1) · (zy2x) = x2y2x.

Show that we have a functor F : Set Grp where sets are mapped to their free
groups, that is, X 7! F (X).

(iii). For any set X, we can build the free ring (R{X},+, ·) as follows. Let (F (X), ·) be
the free group with the added relation that xy = yx for any x, y ∈ F (X). We can
then define

R{X} =




∑

xi∈F (X)
xnii |





Note: This example becomes particularly important later. It can also be generalized to
functors F : Set Mon, F : Set Ring, and other algebraic systems, since sets can
also be turned into free monoids, free rings, or other free “objects.”

6. Let V be a vector space over a field k. Recall that we can associate V with its projective
space P (V ) which is defined as the set of equivalence classes of element in V , subject to
the relation v ∼ w if v = λw for some nonzero λ ∈ k. That is,

P (V ) =
{

[v] | v ∈ V
}

where [v] denotes the equivalence class of v. Show that this process is functorial, so that
we have a functor

P : Vectk Set .

7. Let R be a ring with ideal I. Recall that we can construct the radical of the ideal I as
the ideal √

I = {r ∈ R | rn ∈ I for some n ≥ 1}.
Show that we have a functor

√
− : Ideals(R) Ideals(R)
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where Ideals(R) is the partial order of ideals on R, whose ordering is given by subset
containment.

8. Let X be a topological space, and denote Open(X) as the category where the objects
are open sets U ⊆ X and morphisms are inclusion morphisms. Create a functor

F : Open(X) Set

where on objects F (U) = {f : U R | f is continuous}. That is, how should F act on
the morphisms for this to be a functor?

9. Let k be a field. With each field, we may associate k with the category Vectk which
consists of finite dimensional vector spaces V over k. Is this process functorial? That is,
do we have a functor

Vect : Fld Cat

where Vect(k) = Vectk?
Hint: No. But explain why it breaks.



1.8 Forgetful, Full and Faithful Functors. 47

1.8 Forgetful, Full and Faithful Functors.

Like functions, functors can be composed to form new functors.
Definition 1.8.1. If A,B and C are categories where

A B CF G

are functors, then we can define the composite functor G ◦ F : A C where

C 7! G(F (C)) ∈ C (f : A B) 7! G(F (f)) ∈ HomC(G(F (A)), G(F (B))).

We’ve now reached something quite important. We have the notion of a category, as well
as the notion of a functor which acts as a map between categories. Moreover, every category C
is equipped with an identity functor 1C : C C, functor composition is associative, and so we
may form the category of categories CAT where
Objects. All categories (large and small)
Morphisms. All functors between such categories.
If we instead restrict our objects to all small categories, we obtain the category Cat, which is
usually what we’ll work with. Overall, what we see is that functors are the rightful “morphisms”
between categories.

Since functors are, in an abstract sense, morphisms, and we know that for general mor-
phisms, there exists a concept of an isomorphism, we can directly apply such a notion to define
what an isomorphic functor is.
Definition 1.8.2. Let C and D be two categories. Then a functor F : C D is said to be a
isomorphism if it is bijective on both objects and arrows.

Equivalently, F is an isomorphic functor if and only if there exists a functor G : D C
such that F ◦ G is the identity on C and G ◦ F is the identity on D (both in terms of objects
and arrows).

Sometimes when a functor maps objects from one category to another, the underlying
structure of the objects in the first category gets lost. Or perhaps a binary operation acting on
the elements in the first set of objects becomes lost. For this, we have a special name.
Definition 1.8.3. Let C and D be categories and suppose F : C D is a functor. Then F
is said to be forgetful whenever F does not preserve the axioms and structure present in the
objects of C (whether it be algebraic or some kind of ordering).

The above definition isn’t precise, although it is a useful notion to have. It will eventually
become precise, but we’ll comment more on that after a few examples.

Example 1.8.4. Consider a group (G, ·) with · the binary operation. In some sense, groups
are simply sets with added structure, while group homomorphisms are simply functions that
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respect group structure. Hence we can create a map between Grp and Set that forgets this
structure:

(G, ·) 7! G ϕ : (G, ·) (H,+) 7! ϕ : G H.

We can demonstrate that this process is functorial. Observe that if 1G : (G, ·) (G, ·) is the
identity group homomorphism, then one can readily note that 1G(g) = g for all g ∈ G, so that
it is also an identity function on the underlying set G. Therefore, F (1G) = 1F (G)

Next, if ϕ : G H and ψ : H K are group homomorphisms, then F (ψ ◦ ϕ) is the
underlying function ψ ◦ ϕ : G K. Note however that for each g ∈ G,

F (ψ ◦ ϕ)(g) = ψ(ϕ(g)) = F (ψ) ◦ F (ϕ)(g) =⇒ F (ψ ◦ ϕ) = F (ψ) ◦ F (ϕ).

Hence, we see that we have a forgetful functor F : Grp Set which leaves behind group
operations, and moreover regards every group homomorphism as a function.

Example 1.8.5. Let (R,+, ·) be a ring. Recall that (R,+) (alone with its addition) is an
abelian group. Hence we can forget the structure of · : R × R R and, in a forgetful sense,
treat every ring as an abelian group.

This then defines a forgetful functor F : Rng Ab which simply maps a ring to its abelian
group. This works on the morphisms, since every ring homomorphism ϕ : (R,+, ·) (S,+, ·)
is a group homomorphism ϕ : (R,+) (S,+) on the abelian groups.

Example 1.8.6. Consider the category Top. Each object in top is a pair (X, τ) where τ is a
topology on X. Moreover, continuous functions are simply functions. This forgetful process is
also functorial:

(X, τ) 7! X f : (X, τ) (Y, τ ′) 7! f : X Y.

This then gives us the forgetful functor F : Top Set.

Some things need to be said about a forgetful functors. You might have noticed that our
definition of a forgetful functor was not at all mathematically rigorous. This is because to define
forgetful functors we have two main options:

1. Use very deep set theory and logic to characterize the data of a category; then define
forgetfulness as forgetting some of the data.

2. Define a forgetful functor to be the left adjoint of a free functor F : C D (usually,
C = Set)

Option 1. sounds like a pain, and I don’t know any logic. I’m sure the reader is probably not
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interested in going on that kind of a ride anyways. Option 2. is not possible right now, but it
will be once we learn about adjunctions.

Thus, using the tools we have right now, we cannot create a rigorous mathematical definition
of a forgetful functor. This does not mean what we’re doing is nonsense; it just means we’re
being sloppy in the interest of pedagogy. Once we learn about adjunctions things will make
more sense, so the reader is urged to not worry too much about the rigor of a forgetful functor.

The sloppiness of our work regarding forgetful functors (i.e., us non-rigorously being like
“Hey! See this piece of data? Let’s throw it away!”) might nevertheless be of some discomfort
for the pedantic reader. This is because we cannot rigorously demonstrate what a forgetful
functor is at this point; hence a reader interested in true understanding won’t be able to
fully do so at this point. Sometimes, however, understanding how something works is aided
by understanding when something doesn’t work. Hence to comfort the pedantic reader, we
introduce an example where one might intuitively think such a forgetful functor exists, but it
in fact does not.

Example 1.8.7. Recall that the category hTop has objects as topological spaces and mor-
phisms as homotopy classes between topological spaces. One might prematurely believe that
there is a forgetful functor hTop Set, but that is not possible.

In trying to do so, we naturally associate topological spaces (X, τ) with its underlying set
X. On morphisms, it’s trickier. Suppose [f : X Y ] is a homotopy equivalence class with
f : X Y as the continuous function representing the class. Choose any f ′ : X Y ∈ [f ];
we may very well choose f itself in which case f ′ = f , and set F (f ′) = f ′, where f ′ ∈ Set is
regarded as a function.

This breaks when we encounter composition. Suppose f : X Y and g : Y Z are
continuous functions. Let F ([f ]) = f ′, G([g]) = g′, and F ([g ◦ f ]) = (g ◦ f)′ where f ′, g′, and
(g ◦ f) are any elements of [f ], [g], [g′ ◦ f ′] respectively. Then in no case can we always expect
that

F (g ◦ f) = F (g) ◦ F (f) =⇒ (g ◦ f)′ = g′ ◦ f ′.
Hence this forgetful process cannot behave functorially.

Next, we introduce the notion of full and faithful functors. Towards that goal, consider a
functor F : C D between locally small categories. Then for every pair of objects A,B ∈ C,
there is a function

FA,B : HomC(A,B) HomD(F (A), F (B))

where a morphism f : A B is sent to its image F (f) : F (A) F (B) under the functor F .
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A

B

gf ··· ··· h

FA,B

F (A)

F (B)

F (g)··· ···F (f) F (h)

C D

As we have a family of functions FA,B, we can ask: when is this function surjective or
injective? This motivates the following definitions.
Definition 1.8.8. Let F : C D be a functor between locally small categories. We say F is

• Full if FA,B is surjective

• Faithful if FA,B is injective.

If FA,B is an isomorphism, we say F is fully faithful.

Now we completely ignored the situation for when C,D are not locally small. This is out of
pedagogical interest; if C,D are not locally small then we do not have the function described
above. However, the concept of full and faithful can still be described; it’s just not as nice of a
description as before.
Definition 1.8.9. Let F : C D be a functor.

• Full if for all A,B, every morphism g : F (A) F (B) inD is the image of some f : A B

in C
• Faithful if for all A,B, we have that if f1, f2 : A B with F (f1) = F (f2), thenf1 = f2.

We then say F is a fully faithful if it is both full and faithful.

Example 1.8.10. Consider the forgetful functor F : Top Set which we introduced earlier;
topological spaces (X, τ) are sent to their underlying sets X while continuous functions f :
(X, τ) (Y, τ ′) are regarded as functions f : X Y . This functor is faithful, since if two
continuous functions are equal as set maps, then they are equal as continuous functions. The
fact that this functor is faithful is simply due to the fact that the extra data on a continuous
function, i.e., its continuity, does not interfere with its behavior of being a set function in
sending points X to Y .

Note however that this function is clearly not full, because not every function g : X Y

can be regarded as a continuous function between the topological spaces.

Example 1.8.11. Let (G, ·) and (H, ·) be a group. Regard both groups as one object categories
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C and D with objects • and • where we set

HomC(•, •) = G HomC(•, •) = H

so that each g ∈ G is now a morphism g : • •, and vice versa for every h ∈ G, so that
composition is given by the group structure. If we have a functor F : C D between these
categories, then the function we introduced simply becomes a set function

F•,• : HomC(•, •) HomD(•, •).

However, the functorial properties allow this to extend to a group homomorphism from G to
H. Therefore, we see that if F : C D is full, it extends to a surjective group homomorphism.
If it is faithful, it extends to an injective group homomorphism.

Example 1.8.12. Consider the category of Grp, and recall it has a forgetful functor F :
Grp Set. This functor is actually fully faithful; to see this, consider two group homo-
morphisms ϕ, ψ : (G, ·) (H, ·), and suppose that F (ϕ) = F (ψ). Then this implies that
F (ϕ)(g) = F (ψ)(g) for each g ∈ G. However, F (ϕ)(g) = ϕ(g) and vice versa for ψ. Therefore,
we have that ϕ = ψ, so that the forgetful functor F is a faithful functor.

The above example can be repeated for many familiar categories, which motivates the
following definition.
Definition 1.8.13. A category C is said to be concrete if there is a faithful functor F :
C Set.

Examples of concrete categories includ Grp, Top, R mod , and many others since these
categories are, in some sense, built from Set. Their objects are sets, and their morphisms are
functions with extra properties; nevertheless, at the end of the day the morphisms are still
functions. Note in particular that these categories are not subcategories of Set, but they are
still deeply related to this category in a way that the above definition illuminates.

We don’t have the tools right now, but we will later show that every small category C is a
concrete category.

Exercises

1. In this exercise, you’ll demonstrate that the image of a functor is generally not a category,
but that full functors remedy the situation.

(i.) Let F : C D. Define the image of F in D to consist of

Objects. All F (A) with A ∈ C



52 Chapter 1. Categories, Functors and Natural Transformations.

Morphisms. For any two objects F (A) and F (B), we have that

HomD(F (A), F (B)) = {F (f) | f : A B}.

Show that this is not always a category. In general, the image of a functor is not a
category.
Hint: Picture two categories C and D below

C
A C

B D

f1 f2

D
X Z

Y

g3

g1 g2

and consider the functor F (A) = X,F (B) = F (C) = Y , and F (D) = Z. Explain
what goes wrong, and more generally why the image of a functor is not a category.

(ii.) Let F : C D be a full functor. Show that the image of C under F forms a full
subcategory of D.

(iii.) By (ii), it is sufficient for F to be full in order for the image to be a category. Is this
condition necessary for the image to form a category? In other words, suppose the
image of a functor F is a category. Is F full?
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1.9 Natural Transformations

Example 1.9.1. Suppose we have a pair of functors F,G : C Set. In particular, suppose
that F (A) ⊆ G(A) for all objects A. This means that for each A, there exists an injection
iA : F (A) G(A).

Now this is a bit of an interesting construction since for any morphism f : A B in C,
there are now two ways we can get from F (A) to G(B).

A

B

f

F (A) G(A)

F (B) G(B)

iA

F (f) G(f)

iB

x x

F (f)(x) F (f)(x) ?= G(f)(x)

As we have two different ways of traversing this diagram, are they equivalent? That is,
is it the case that

G(f) ◦ iA = iB ◦ F (f) or, spelled out, F (f)(x) = G(f)(x)?

In general, this isn’t true. But one way (and as we’ll see in the future, the only way) we can
make this diagram commute is if

F (f) = G(f)
∣∣∣
F (A)

.

That is, if F (f) is a restriction of G(f). We summarize this observation by stating that, if
F (f) = G(f)

∣∣∣
F (A)

for all f , then the inclusion iA : F (A) G(A) is natural.

Example 1.9.2. Let X be a topological space. Then we can create the abelian groups

C0(X), C1(X), . . . , Cn(X), . . .

Here, Cn(X) is the free abelian group generated by continuous functions of the form ϕ : ∆n

X, where where ∆n is the n-simplex. Hence, elements are of Cn are of the form
∑

ϕ

nϕ · ϕ

where all but finitely many of the integer coefficients nϕ are zero.
In algebraic topology, one observes that these abelian groups assemble into a chain via a

boundary operator ∂n : Cn Cn−1 with the property that ∂n+1 ◦ ∂n = 0 for all n.

· · · Cn(X) Cn−1(X) · · · C0(X)∂n+1 ∂n ∂n−1 ∂1
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Now suppose that f : X Y is a continuous map between topological spaces. Then for each
n, there is an evident mapping between the chain complexes.

Cn(f) : Cn(X) Cn(Y )
∑

ϕ

nϕ · ϕ 7!
∑

ϕ

nϕ · f ◦ ϕ.

This is because if ϕ : ∆n X is a singular map then f ◦ ϕ : ∆n Y is also a singular map
because f is continuous. However this presents us with an issue, one we faced in the earlier
example. On one hand, we have a map Cn−1(f) ◦ ∂n : Cn(X) Cn(Y ). On the other hand,
we have a map ∂n ◦ Cn(f) : Cn(X) Cn(Y ). But are these equivalent maps?

Cn(X) Cn−1(X)

Cn(Y ) Cn−1(Y )

∂n

Cn(f) Cn−1(f)

∂n

It’s a simple exercise to show that this diagram does in fact commute, i.e., that Cn−1(f) ◦ ∂n =
∂n ◦ Cn(f) for all n.

As a result, this "natural" result (again pun intended) gives us intuition on how to define
a mapping between two chain complexes {Cn}n∈N and {Cn}n∈N: : it is any family of maps
ψn : Cn C ′n such that ψn−1 ◦ ∂n = ∂n ◦ ψn. Moreover, since we have a notion of objects (i.e,
chain complexes {Cn} ) and morphisms (chain maps) this gives rise to a category Ch(Ab), the
category of chain complexes of abelian groups.

When the two ways to traverse the diagram are equivalent, we call this behavior natural and
it makes mathematicians very happy. Naturality, which is what we will refer to this property
as, is ubiquitous in mathematics and functors give us a convenient way of conceptualizing this
useful property.
Definition 1.9.3. Let F,G : C D be two functors. Then we define a mapping7 between the
functors

η : F G

to be a natural transformation if it associates each C ∈ Ob(C) with a morphism

ηC : F (C) G(C)

in D such that for every f : A B, we have that

7Think morphism, because the word mapping here doesn’t rigorously mean anything. That’s because we
don’t really have a word to describe what a natural transformation really is. We have axioms, which we present,
but we don’t have a nice word. That nice word will turn out to be morphism, and you will see soon why.
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A F (A) G(A)

B F (B) G(B)

f

ηA

F (f) G(f)

ηB

which amounts to ηB ◦ F (f) = G(f) ◦ ηA.
Thus we can imagine that η translates the diagram produced by the functor F to a diagram

produced by G. For example; if η is a natural transformation between F and G, then we also
see that the following diagram commutes:

A

B

C

h

f

g

F (A) G(A)

F (B) G(B)

F (C) G(C)

F (h)

F (f)

ηA

G(h)
G(f)

ηB

F (g) G(g)
ηC

and this diagram commutes

A B

C D

h

f

g

k

F (A) G(A)

F (B) G(B)

F (C) G(C)

F (D) G(D)

if the above diagram on the left commutes. Colors are added to aid the visualization in seeing
how the natural transformation translates the diagram produced by F to the diagram produced
by G.
Definition 1.9.4. Let η : F G be a natural transformation. If ηA : F (A) G(A) is an
isomorphism for each object A, then we say η is a natural isomorphism.

Example 1.9.5. Let K be a ring in CRng. Recall from Exercise 1.3.3 that

GLn(−) : CRing Grp (−)× : CRing Grp
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are functors. In that exercise we actually showed that the domain categories were Ring, but
for our purpose we can restrict these functors to the full subcategory CRing.

Consider a commutative ring K. Recall that for matrix M ∈ GLn(K), we can take the
determinant of K; we are usually more familiar with this concept when K = R. However, it
is a fact from ring theory that a matrix M is invertible if and only if the determinant det(M)
of M is in K×. Since GLn(K) is the set of all such invertible matrices, we see that we may
associate each K with its determinant function

detK : GLn(K) K×

which sends an invertible M ∈ GLn(K) to its determinant in K×. To see that this morphism
is a group homomorphism, we simply recall the determinant property

det(AB) = det(A) det(B).

The claim is now that this family of morphisms assembles into a natural transformation. Specif-
ically, that det : GLn(−) (−)×. To see, this, let f : K K ′ be a homomorphism between
commutative rings. Recall from ring theory that the determinant of a matrix M = [aij] with
aij ∈ K is given by

det(M) =
∑

σ∈Sn
sgn(σ)a1σ(1) · · · anσ(n).

where Sn is the symmetric group, and sgn(σ) is the sign of a permutation. Now for det to form
a natural transformation, we’ll need that the diagram below commutes.

K GLn(K) K×

K ′ GLn(K ′) K ′×

f

detK

GLn(f) f×

detK′

Note that f : K K ′ is a commutative ring homomorphism. To show this diagram commutes,
consider any M = [aij] ∈ GLn(K). Observe that

(f× ◦ detK)(M) = f×(detK(M))

= f×


∑

σ∈Sn
sgn(σ)a1σ(1) · · · anσ(n)




=
∑

σ∈Sn
sgn(σ)f(a1σ(1)) · · · f(anσ(n))

= detK′([f(aij]))
= detK′ ◦GLn(f)(M).

Hence we see that the diagram commutes, so that the determinant det : GLn(−) (−)×
assembles into a natural transformation between the functors.
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Example 1.9.6. For a field k, recall that we have two functors An(−), P n(−) : Fld Set
where

An(k) = {(a0, . . . , an−1) | ai ∈ k} P n(k) = An+1(k)/ ∼
where ∼ is the equivalence relation on the set An+1(k) described as follows: (a0, . . . , an) ∼
(a′0, . . . , a′n) if (a0, . . . , an) = λ(a′0, . . . , a′n) for some nonzero λ ∈ k. Geometrically, the equiva-
lence relation identifies points which are lying on the same line passing through the origin.

As we noted before, these functors are particularly important in algebraic geometry. Now for
each point (a0, . . . , an), denote [(a0, . . . , an)] as its equivalence class. Let θk : An+1(k) P n(k)
be the function that maps a point (a0, . . . , an) to its equivalence class [(a0, . . . , an)]. Our claim
is that for each k, the functions θk assemble into a natural transformation.

That is, for a field homomorphism ϕ : k k′, the diagram

k

k′

ϕ

An+1(k) P n(k)

An+1(k′) P n(k′)

θk

An+1(ϕ) Pn(ϕ)

θk′

commutes. The reader is encouraged to fill in the details for this one. It’s quite surprising that
this does assemble into a natural transformation, because in general there is no reason to ever
expect that the projection map, π : X X/ ∼ with ∼ an equivalence relation, is, in any sense,
natural. Its because most functions mess things up, and disorganize the equivalence classes!

The above morphism, θ : An+1 P n, actually has a very interesting geometric realization8.
If Y is an algebraic subset of P n(k), then we can build the affine cone C(Y ) = θ−1(Y ) ∪
{(0, . . . , 0)}. With n = 2, Y corresponds to a curve in P 2(k), which generates the surface C(Y )
in in A3(k).

8This isn’t important for the reader to understand. However, I do want to avoid blabbering abstract nonsense
so that the reader knows we’re doing real, relevant mathematics. And perhaps it might be motivation for the
reader to check out an algebraic geometry text!
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Y

C(Y )

Example 1.9.7. Earlier, we showed that pG : Grp Ab in which G 7! G/[G,G] was a
functor. It turns out that the projection

TG : G G/[G,G] g 7! g + [G,G]

forms a natural transformation between the identity functor 1Grp : Grp Grp on Grp and
the functor pG.

To show this, consider the morphism f : G H in Grp. We know that pG induces a
function f ∗ : G/[G,G] H/[H,H] defined as

f ∗(g + [G,G]) = f(g) + [H,H].

Now let g ∈ G.

TH ◦ f(g). On one hand, observe that

TH ◦ (f(g)) = f(g) + [H,H].

f∗ ◦ (TG(g)). On the other hand, observe that

f ∗ ◦ TG(g) = f ∗(g + [G,G]) = f(g) + [H,H].

Hence, we see that
TH ◦ f = f ∗ ◦ TG

so that the following diagram commutes
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G G/[G,G]

H H/[H,H]

f

TG

f∗

TH

and hence T is a natural transformation.

Example 1.9.8. The categories FinOrd and SetF , are closely related categories. Recall that
FinOrd has finite ordinals n = {0, 1, 2, . . . , n − 1} as objects with morphisms all functions
f : m n where m,n are natural numbers, and the objects of SetF are all finite sets (of some
universe U) with morphisms all functions between such sets.

Obviously the objects and morphisms of FinOrd are in SetF . Thus, let S : Findord
SetF be the inclusion functor.

Define a functor # : SetF FinOrd as follows. Assign each X ∈ SetF to the ordinal
#X = n, the number of elements in X. We can represent this bijective mapping as

θX : X #X.

Furthermore, if f : X Y is a morphism in SetF , associate f with the morphism #f :
#X #Y in FinOrd defined by

#f = θY ◦ f ◦ θ−1
X .

Thus we have that the following diagram is commutative:

X #X

Y #Y

f

θX

#f

θY

and θ acts a natural transformation between the two functors.
Note that if X is an ordinal number, we define θX to be the identity function, which ensures

that #◦S is the identity functor on FinOrd. However, S ◦# is not the identity on SetF , since
the input will be X while the output will just be #X (as S is just the inclusion functor.)

To end this section, we offer a topological interpretation of the concept of a natural trans-
formation, one which has been known by category theorists since the 1960’s, but a perspective
which usually is not introduced since it does not really offer signficant pedagogical advantagous
unless the reader is already aware of basic homotopy theory (in which case, they probably



60 Chapter 1. Categories, Functors and Natural Transformations.

already know what a natural transformation is). I’ve nevertheless decided to include it because
it is an interesting perspective.

Let X and Y be topological spaces. Consider two functions f : X Y . Recall that a
homotopyH fromX to Y is a continuous functionH : [0, 1]×X Y such thatH(0, x) = f(x)
and H(1, x) = g(x). A simple example of a homotopy is when X = [0, 1]. In this case,
f, g : [0, 1] Y are simply two continuous paths in Y . A homotopy, in this situation, between
f, g is pictured on the bottom left.

A
B

C
D

f

g

P

Q

f

g

On the above right we have the situation for when f, g start and end at the same point; this
homotopy is know as a path homotopy.

Of course, a homotopy doesn’t always exist. When it does, a homotopy can be interpreted as
parameterizing, via t ∈ [0, 1], a family of continuous functions Ht : X Y which continuously
deform f into g9.

But this story is familar! A natural transformation η : F G between two functors
F,G : C D give rise to a family of morphisms ηA : F (A) G(A) which are parameterized
by the objects of C (which also satisfy the naturality property). Below we have this pictured of
what this generally looks like.

F (A1)
G(A1)

F (A2)
G(A2)

F (A3)
G(A3)

...

...

F (An−1)
G(An−1)

F (An)
G(An)

9Caution: a family of continuous functions does not conversely define a homotopy.
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So, what gives? Is the concept of a natural transformation somewhat logically and conceptually
analogous to the concept of a homotopy? The answer is yes, and we can define a natural trans-
formation in the following manner which is strikingly similar to the definition of a homotopy.

Definition 1.9.9. Let F,G : C D be functors. Let 2 be the category with two objects
0, 1 and a single nontrivial morphism. A natural transformation η : F G is a functor
η : C × (2) D such that η(−, 0) = F and η(−, 1) = G.

Proving this is left as an exercise.
Exercises

1. In what follows, let F,G : C D be a pair of functors. Interpret what a natural
transformation η : F G is in each case.

(i.) Where C is a discrete category, and D is arbitrary. Separately, can we have a natural
transformation when D is discrete?

(ii.) Where C and D are preorders.

(iii.) Where C and D are one-object categories whose morphisms are group.

(iv.) Where C is arbitrary and D is Cat.

2. Show that Definition 1.9.9 and Definition 1.9.3 are equivalent.

3. Consider the initial discussion of this section. Prove that for two functors F,G : C Set
such that F (A) ⊆ G(A) for all A ∈ C, the inclusion morphisms iA : F (A) G(A) form
a natural transformation i : F G if and only if, for each f : A B in C, we have
that F (f) = G(f)|F (A).

4. Let C be a category, and consider two objects A,B so that we have the functors

HomC(A,−),HomC(B,−) : C Set .

(i.) Let ϕ ∈ HomC(B,A). Show that the family of functions

ϕ∗C : HomC(A,C) HomC(B,C)

indexed by each object C ∈ C, where ϕ∗C(f : A C) = f ◦ ϕ : B C, forms a
natural transformation ϕ∗ : HomC(A,−) HomC(B,−).

(ii.) Show that every natural transformation η : HomC(A,−) HomC(B,−) is con-
structed in this way.

5. Let F : C Set be any other functor. Interpret what a natural transformation η : • F

is. What about ε : F •?
6. For every ring R there is a natural inclusion homomorphism iR : R R[x]. Thus, let
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(−)[x] : Ring Ring be the functor that sends a ring R to its single-variable polynomial
ring R[x]. Show that we have a natural transformation

i : I (−)[X]

where I : Ring Ring is the identity on Ring.

7. Recall the category of G-sets is the category where

Objects. All G-sets X (i.e., sets X such that G has a group action ϕ : X ×G X)
Morphisms. All G-equivariant morphisms (i.e., functions f : X Y such that f(g·x) =

g · f(x)).

(Also see Exercise 1.3.6). Let X be a G-set with action map ϕ : X ×G X and fix an
element g ∈ G. For such an X, define the map ϕgX : X X where ϕgX(x) = ϕ(g, x).

Show that for each g, the maps ϕg form a natural transformation I I, where I :
G-sets G-sets is the identity functor on this category. (Note that this is a nontrivial
example of a natural transformation between a functor and itself!)
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1.10 Monic, Epics, and Isomorphisms

In category theory the ultimate focus is placed on the morphisms within a category. What we
really care about are the relationships between the objects. Thus in this section we’ll go over
types of morphisms that exist between objects.

The way that this is done in set theory is to consider injective functions, surjective functions,
and isomorphisms. This can also be done in topology, and in group, ring, and module theory.
However, these concepts make no sense in general. This is because in general, the morphisms
of a category are not functions because in general, the objects of a category are not sets (even
if the objects are sets, the morphisms can still be different than functions).

We can nevertheless abstract the concept of injections and surjections by expressing their
properties categorically; that is, without reference to specific elements in any objects. This
leads to the concepts of monomorphisms and epimorphisms.

Definition 1.10.1. Let f : A B be a morphism. Then

1. f is a monomorphism (or is monic) if

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

for all g1, g2 : C A, where D is arbitrary.

2. f is a epimorphism (or is epic) if

g1 ◦ f = g2 ◦ f =⇒ g1 = g2

for all g1, g2 : B C, where C is an arbitrary object.

3. f is a split monomorphism (or retraction) if, for some
g : B A,

f ◦ g = 1B.

4. f is a split epimorphism (or section) if, for some g : B A,

g ◦ f = 1A.

C A

B

f◦g1=f◦g2

g1

g2

f

A

B C

f
g1◦f=g2◦f

g1

g2

Monomorphisms and epimorphisms are an abstraction that take advantage key properties
of both injective and surjective functions. We illustrate this with a few examples.

Example 1.10.2. In Set, an injective function f : X Y is “one-to-one” in the sense that
f(x) = f(y) if and only if x = y. With that said, suppose that g1, g2 : Z X are functions
and moreover that f ◦ g1 = f ◦ g2. Then this means that, for all z ∈ Z, we have that

f(g1(z)) = f(g2(z)) =⇒ g1(z) = g2(z)
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since f is one-to-one. Hence we see that injective functions are monomorphisms in Set; one
can then conversely show that a monomorphism in Set are injective functions.

Example 1.10.3. Let (G, ·) be a group, and suppose (H, ·) is a normal subgroup of G. Then
with such a construction, we always have access to the inclusion and projection homomorphisms

i : H G i(h) = h

π : G G/H π(g) = g +H.

It is not hard to see that i is a monomorphism and π is an epimorphism; for suppose ϕ, ψ :
K G are two group homomorphisms from some group K where i ◦ϕ = i ◦ψ. Then for each
k ∈ K, i(ϕ(k)) = i(ψ(k)) =⇒ ϕ(k) = ψ(k), so that ϕ = ψ. Conversely, if σ, τ : G M

are two group homomorphisms to some group M such that σ ◦ π = τ ◦ π, then because π is
surjective we have that σ = τ . Hence, we see π is an epimorphism.

Since the above constructions can be repeated in the categories Ab, Ring, and R mod ,
so can the above argument. We’ll see more generally the deeper reason for why this is the case
later on.

Example 1.10.4. In the category of fields, Fld, every nonzero morphism is a monomorphism.
This is due to the classic argument: the only nontrivial ideal of a field k its itself; hence the
kernal of any map ϕ : k k′ is either trivial or all of k. If we suppose ϕ is nonzero, then we
see that it must be injective, and hence a monomorphism.

Definition 1.10.5. Let f : A B be a morphism between two objects A and B. We say that
f is an isomorphism if there exists a morphism f−1 : B A in C! such that

f ◦ f−1 = idA f−1 ◦ f = idB .

In this case, f−1 is unique, and for any two isomorphisms f : A B and g : B C we have

(g ◦ f)−1 = f−1 ◦ g−1.

In this case we say that A and B are isomorphic and denote this as A ∼= B.

This is a generalization of the familiar concept of isomorphisms in abstract algebra and in
set theory that one usually encounters.

Next, we illustrate a few properties of these types of morphisms.
Proposition 1.10.6. Let F : C D be a functor. Then if f : A B ∈ C
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• is an isomorphism, then F (f) is an isomorphism in D.
• is a split monomorphism, then F (f) is a split monomorphism in F (f)

• is a split epimorphism, then F (f) is a split epimorphism.

That is, functors preserve isomorphisms, split monomorphism, and split epimorphisms.

In general, functors do not reflect isomorphisms, split monomorphisms, and split epimor-
phisms. That is, if F (f) : F (A) F (B) is an isomorphism it is not the case that f is an
isomorphism.

We demonstrate this with the following example.

Example 1.10.7. Recall that Spec(−) : CRing Set is a functor that appears in algebraic
geometry. It sends every commutative ring A to its ring spectrum Spec(A), which consists of
all prime ideals of A.

Let N =
⋂

P∈Spec(A)
P be the intersection of all prime ideals. An equivalent way to speak of

N is the set N = {a ∈ A | am = 0 for some positive integer m}; that is, N is equivalently the
nilradical elements of A.

Now the projection ring homomorphism

ϕ : A A/N

is certainly not an isomorphism (unless A has no nontrivial nilradical elements), but the image
of this map under Spec

Spec(ϕ) : Spec(A/N) −!∼ Spec(A)

is always an isomorphism. In fact, if we impose the Zarisky topology on these prime spectrums,
the functor becomes one which goes to topological spaces

Spec(−) : CRing Top

and the map ϕ becomes a homeomorphism. Hence, this functor does not reflect isomorphisms
in either the set or topological senses, because the image Spec(ϕ) is an isomorphism, but ϕ is
not. Despite this, the interpretation of this result is a useful one because it demonstrates that
algebraic geometrists can “throw away” their nilradical elements without changing their Zariski
topology.

Lemma 1.10.8. The composition of monomorphisms (epimorphisms) is a (an) monomorphism
(epimorphism).

Proof. Let f : A B and g : B C be monomorphisms, and suppose h1, h2 : D A are
two parallel morphisms. Suppose that (g ◦ f) ◦h1 = (g ◦ f) ◦h2. Note that we can rewrite the
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equation to obtain that

g ◦ (f ◦ h1) = g ◦ (g ◦ h1) =⇒ f ◦ h1 = f ◦ h2.

as g is monic, and hence it is left cancellable. But once again, f is monic, so we cancel on
the left to obtain that h1 = h2 as desired. �

Note: it is not always the case that a monic, epic morphism is an isomorphism (that is, it’s
not always invertible.)

Example 1.10.9. Consider the category Top, consisting of (small) topological spaces as our
objects with continuous functions between them as morphisms. Let D be a dense subset of a
topological space X and let i : D X be the inclusion map. We’ll show that this function is
both epic and monic.

To show it is epic, let f1, f2 : X Y be continuous maps form X to another topological
space Y . Let Y be Hausdorff, and suppose that

f1 ◦ i = f2 ◦ i.

Now Im(i) = D, so the above equation tells us that f1(d) = f2(d) for all d ∈ D. That is, the
functions agree on the dense subset. However, we know from topology that this implies that
f1 = f2.

Proof. Suppose that f1(x) 6= f2(x) for some x /∈ D. Since the points are distinct, and since Y
is Hausdorff, there must exist disjoint open sets U, V in Y such that f1(x) ∈ U and f2(x) ∈ V .
Since both f1, f2 are continuous, there must exist open sets U ′, V ′ in X such that f(U ′) ⊆ U

and g(V ′) ⊆ V .
However, since D is dense in X, both U ′ and V ′ must intersect with some portion of D;

that is, there is some y ∈ U ′ and z ∈ V ′ such that y, z ∈ D. Therefore, we see that f1(y) ∈ U
and f2(z) ∈ V , and since y, z ∈ D we have that f1(y) = f2(z). But this contradicts the fact
that U ∩V = ∅. Therefore, we have a contradiction and it must be the case that f1(x) = f2(x)
for all x ∈ X, as desired. �

Therefore, we see that i is epic. To show that it is monic, suppose g1, g2 : Y D are two
parallel, continuous functions, and that

i ◦ g1 = i ◦ g2.

Since i is nothing more than an inclusion map, we immediately have that g1 = g2. Therefore, i
is also monic.

However, note that i : D X is not an isomorphism, since it is not necesasrily always
surjective. Hence i is an example of a monic, epic morphism which is not an isomorphism.
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We finish our discussion on monics and epics by considerig the automorphism groups of a
category.
Definition 1.10.10. Let C be a locally small category. For each object A in C, we can consider
the automorphism group Aut(A) whose objects consist of isomorphisms ϕ : A −!∼ A, whose
product is composition, and whose identity is 1A.

Note that despite the notation, this does not generally define a functor.

Example 1.10.11. Some examples of the above construction include familiar and useful
examples in mathematics.

• For any group (G, ·) in Grp, we can formulate the automorphism group Aut(G) which is
the group of isomorphisms from G to itself. Depending on G, this can have all kinds of
behavior. For example, if Aut(G) is cyclic, then G is abelian. If G is an abelian group of
order pn, then Aut(G) = GL(n, F ) where F is the finite field of order p.

• For any set X in Set, the automorphism group Aut(X) consists of the bijections on X to
itself; by definition in set theory, these are just permutations. Hence the automorphism
group is the permutation group of the elements of X.

• For any field (k, ·,+) in Fld, the automorphism group Aut(k) also consists of field isomor-
phisms to itself. In this setting, what is often of more interest is considering the subgroups
of Aut(k), often denoted as Aut(k/L), which are automorphisms that fix the subfield L.
These subgroups are key to studying polynomial roots and hence are prevalent in Galois
theory.

• For any graph (G,E, V ) in Grph, one can construct the automorphism group Aut(G),
which tracks the symmetries of the graph. Interestingly, there is a theorem known as
Frucht’s Theorem which states that every finite group is the automorphism group of
a finite (undirected) graph; this was later extended and shown that every group is the
automorphism group of a directed graph [Groups represented by homeomorphism groups.].

• For any topological space (X, τ) in Top, the autormorphism group Aut(X) consists of the
homeomorphisms to itself. Geometrically, these record the possible ways of continuously
deforming a space back into itself. It is a theorem that every group is the automorphism
group of some complete, connected, locally connected metric space M of any dimension.

With the automorphism group in mind, we might ask the same question on the object level:
Given an object A in C, what objects are isomorphic to A in C? To answer this, we define the
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relation ∼ on Ob(C), the objects of C, where we say

A ∼ B if A ∼= B.

Such an equivalence relation divides the objects of C into disjoint isomorphsm classes, which
reduces the structure of C.
Definition 1.10.12. Let C be a category and A any object. We call the equivalence class of A
under ∼, defined previously, as the isomorphism class which we denote as

Isom(A) = {X ∈ Ob(C) | X ∼= A}.

This leads to the following categorical construction which preserves a great deal of informa-
tion within the category.
Definition 1.10.13. Let C be a category, and assume the axiom of choice. Then we can
construct a skeleton of a category C, denoted sk(C), as the category where
Objects. For each A ∈ C, we select one representative of each isomorphism class Isom(A).
Morphisms. For two representatives of isomorphism classes A,B, we take

Homsk(C)(A,B) = HomC(A,B)

We note three things regarding this construction.
(1) We used the axiom of choice to build the objects of the category, since we needed to select

one element from each isomorphism class.
(2) The category sk(C) is a full subcategory of C by definition.
(3) We note that this construction builds a skeleton. In general, a category will have different

skeletons because there are many ways to construct the objects of such a skeleton.
As noted, a category will have different skeletons. However, up to isomorphism, it does not
really matter which skeleton we build as we will see.
Lemma 1.10.14. Let C be a category, and let sk(C) and sk′(C) be two skeletons built from C.
Then sk(C) ∼= sk′(C).

The prove is left as an exercise for the reader. We will see late that there are more enjoyable
properties of “skeletal” categories, which we define as categories exhibiting this type of behavior.
Definition 1.10.15. A category C is called skeletal if no two distinct objects are isomorphic
in C.

Categorical skeletons are inadvertently studied everywhere in mathematics. For example,
asking for a classification of abelian groups, of manifolds, or even of the cardinality of every set
is the same thing as asking for the skeletons of Ab, DMan, and Set. We give a few examples.

Example 1.10.16. Consider the category FinCard (read: “finite cardinals”) which we de-
scribe as
Objects. The set ∅ and the sets {1, 2, ..., n} for each n ∈ N.
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Morphisms. All functions between these finite sets.
Clearly this is a full subcategory of FinSet. Moreover, it is skeletal; no two sets are isomorphic
because each object is of different size. Therefore, it is skeletal. In fact, FinCard is a skeleton
of FinSet because any finite set (in some universe U) can be ordered in some way, which
provides an enumeration on its objects. In other words, every finite set is of some finite size,
making it isomorphic to some set {0, 1, 2, . . . , n}.

Example 1.10.17. One can try to generalize the previous example to Set, but this is in
general not possible unless we assume ZFC with the generalized continuum hypothesis, as
such a posulate is independent of ZFC.

Assuming such an axiom, we can construct the category Card where
Objects. The sets ∅, {1, 2, . . . , n} for each n ∈ N, and ω0, ω1, ω2, . . .

Morphisms. All functions between such sets.
Here we see that this is again a skeleton Set, since by our assumptions (which is assuming a
lot), any set is of some cardinality 1, 2, . . . , n, . . . ,ℵ0,ℵ1, . . . . However, for each such cardinal
we have a corresponding set with that cardinality. Hence each element in Set is isomorphic to
some element of Card. Overall, we see that Card forms a skeleton of Set.

The above example can be repeated for Cycl, the category of cyclic groups. This is because
any two cyclic groups of the same order are isomorphic. Hence, one can find a skeleton of Cycl
by finding a family of cylic groups of every set size (again, using the generalized continuum
hypothesis).

Example 1.10.18. Consider the category Ecld of Euclidean spaces, which we may describe
as
Objects. The vector spaces Rn for each n = 0, 1, 2, . . . ,
Morphisms. Linear transformations between vector spaces.
Then we see that Ecld is the skeleton of FinVectk, which is the category of finite-dimensional
vector spaces. The reason why this works is because every finite dimensional vector space is
isomorphic to Rn for some n.

Exercises

1. Prove Lemma 1.10.8 for epimorphisms.

2. Prove Lemma 1.10.14.
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3. Describe the monomorphisms and epimorphisms in the category of Cat.10

4. In the category of Ring, give an example of a morphism which is both a monomorphism
and epimorphism, but not an isomorphism.
(Hint: Consider the inclusion i : Z Q.)

5. Recall from Exercise ? that, in any category, if we have two commutative diagrams,
we can always stack them together to obtain a larger commutative diagram. We saw,
however, that converse is not always true: subdividing a commutative diagram does not
produce smaller commutative diagrams.

Prove that the converse is true when all morphisms are isomorphisms.

10Classifying epimorphisms in Cat is actually nontrivial, although not impossible. However, the task here is
to just interpret the definition of monics and epics Cat.
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1.11 Initial, Terminal, and Zero Objects

We can also be more specific in discussing the nature of the objects of a given category C.

Definition 1.11.1. Let the following objects exist in some category C.

• Let T be an object. Then T is terminal if for each object A, there exists exactly one
morphism fA such that fA : A T .

• Let I be an object. Then I is said to be initial if for each object A there exists exactly
one morphism fA : I A.

• An object Z is said to be a zero object if it is both terminal and initial. Since terminal
and initial objects are unique, so is a zero object.

Equivalently, it is zero if for any objects A,B, there exists exactly one morphism f :
A Z and exactly one morphism g : Z B. Hence, for any two objects there exists a
morphism between them, namely given by by g ◦ f , called the zero morphism from A

to B.

If an object T is terminal, then there is one and only morphism to itself (namely, its identity).
Therefore, for any two terminal objects T and T ′, they are isomorphic, since by assumption
there exists unique morphisms f : T T ′ and g : T ′ T and we have no choice but to say

f ◦ g = 1T g ◦ f = 1T ′ .

Example 1.11.2. Recall that in the category Grp, there exists a trivial group {e}. Moreover,
for each group G, there exist unique group homomorphisms

iG : {e} G e 7! eG

and
tG : G {e} g 7! eG.

Note that both are group homomorphisms since they both behave on identity elements and are
trivially distributive across group operations. This then shows that Grp, the trivial group is
initial and terminal and hence a zero object.

This makes sense since for any two groups G,H, there exists a unique map

z : G H g 7! eH

which could be factorized as
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{e}

G H

iH

z

tG

which demonstrates the existence of a zero object (the name "zero" makes sense now, right?),
which we already know is {e}. Note in this example, we did not actually use much group theory.
In fact, this could be repeated for the categories R mod , Ab, and other similar categories.

The next two examples demonstrate that terminal and initial objects of course don’t always
have to coincide like they did in the previous example.

Example 1.11.3. Let n be a positive integer. Recall that we can create a category, specifically
a preorder, by taking our objects to be positive integers less than n, and allowing one morphism
f : k m whenever k ≤ m.

1 2 3 · · · n

Then 1 is an initial object while n is a terminal object. This is because for any number
1 ≤ m ≤ n, there exists a unique morphism from 1 to m, and a unique morphism m to n, both
which may be obtained by repeated composition.

Example 1.11.4. Consider the category Set. Let X be a given set in this category. Then
there are two unique functions which we may construct. First, there is the function

tX : X {•}

where everything in X is mapped to the one element • of the one point set. Secondly, we may
construct a function whose domain is the empty set, and whose codomain is X, as below.

iX : ∅ X

Thus we have that, in Set, the one point set is a terminal object {•} while the empty set ∅ is
an initial object.

One may wonder at this point: How exactly is iX a true, set theoretic function? And why
can’t we also obtain a unique morphism i′X : X ∅, so that ∅ is a terminal object as well?

The second question is easy to answer; if ∅ was also terminal, then we’d have that {•} ∼= ∅
which is not true. Since this is a bit of a boring answer, we’ll explain in detail.
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Recall that a function in f : A X between two sets A and X is a relation R ⊆ A ×X
which satisfies two properties.

1. (Existence.) For each a ∈ A, there exists a x ∈ X such that (a, x) ∈ R
2. (Uniqueness. Or, if you’d like, the vertical line test.) If (a, x) ∈ R and (a, x′) ∈ R then
x = x′.

Now observe that if A = ∅, then R ⊆ ∅ × X = ∅. Hence (1) and (2) are satisfied because
each is trivially true. However, we don’t get a function f : X ∅, since in this case (1) fails.
Specifically, (1) demands the existence of elements in our codomain, a demand we cannot meet
if it is empty.

Thus we see that ∅ is initial, but not terminal as our intuition may suggest, and that {•}
is terminal.

Example 1.11.5. Consider the category of fields Fld. Suppose we ask if this has an initial or
terminal object.

We might guess that the smallest field

F2 ∼= (Z/2Z,+, ·) = {0, 1}

which has characteristic 2 is an initial object. However, this fails to be initial. Observe that
the only homomorphism between F2 and F3 is the zero homomorphism, which is not in our
category. (Recall that Fld is a full subcategory of Ring, a category whose morphisms we
require to be unit preserving.)

The reason why it must be the zero homomorphisms is because F3 has characteristic three,
and in general, two fields will only share a (nonzero) field homomorphisms if they have the
same characteristic.

By a similar argument, we can state that terminal objects also do no exist. Overall, these
objects fail to exist in Fld because fields have a large set of restictions imposed by their numerous
axioms. Hence, this category lacks initial and terminal objects.

Exercises

1. (i.) Let C be a category with initial object I. For any two objects A,B ∈ C, define for
each f ∈ HomC(A,B) the functor

Pf : 2 C

such that P (•) = A, P (•) = B, and Pf (• •) = f : A B. Show that for each
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f : A B in C, we have a natural transformation

η : P1I Pf .

Note that 1I : I I is the identity on the initial object.

(ii.) Suppose we don’t know if C has an initial object, but we have a distinguished object
I ′ with the property that for each f ∈ HomC(A,B) there is a natural transformation

η : P1I′ Pf .

Is I ′ an inital object?

(iii.) Dualize your work for terminal objects.
(Hint: We now want a natural transformation η′ : Pf P1I ).
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2.1 Cop and Contravariance

Definition 2.1.1. Consider a category C. Then we define the opposite category of C,
denoted Cop, to be the category where
Objects. The same objects of C.
Morphisms. If f : A B is a morphism of C, then we let f op : B A be a morphism of

Cop.
In this case, composition isn’t exactly obvious, so we will explain how that works.

Let f : A B and g : B C be morphisms of C. Then we obtain morphisms f op : B A

and gop : C B. In this case f op, gop are composable, and we define composition of Cop,
denoted as ◦op, to be the morphism

f op ◦ gop : C A.

Moreover, we have the relation (g ◦ f)op = f op ◦ gop.

Taking the opposite category might seem very strange, but we are doing nothing more than
just taking the same category and swapping the domain and codomain of every morphism.

Consequently, many properties of morphisms are similarly reversed. For example, if f :
A B is monomorphism in C, then f op : B A is an epimorphism in Cop. More generally,
every logically valid statement that can be made in C using its objects and morphisms can
be dualized to achieve an equivalent, logically valid statement in Cop using its objects and
morphisms.

Example 2.1.2. Consider a category C containing 3 objects whose morphisms are arranged as
follows:
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A

C B

f

1A

h

1C

g

1B

What does the dual category Cop look like? Well, Cop contains the same objects A,B and
C. As for the morphisms, C has the three morphisms f, g, h, in addition to their composites.
Therefore, Cop also has three morphisms f op : B A, gop : C B and hop : A C and
their composites. Hence, Cop looks like this:

A

C B

h

1A

g

1C
f

1B

Example 2.1.3. Let P be a preorder, specifically a partial order. Recall that this means that
P has a binary relation ≤ and if p ≤ p′ and p′ ≤ p, then p = p′.

We claim that that P op is still a partial order. But first, what does P op even look like? If
we have some elements p1, p2, p3 in P such that

p1 ≤ p2 ≤ p3

Then, as a category, P has the unique morphisms f : p1 p2 and g : p2 p3. Hence, in P op,
we have the unique morphisms gop : p3 p2 and f op : p2 p1, so that we obtain a reversed
binary relation ≤op in P , which reorder p1, p2, p3 as below.

p3 ≤op p2 ≤op p1

This is kinda weird to write, and in fact, it makes more sense if we write ≤op=≥ as the binary
relation in P op. We then have that

p1 ≤ p2 ≤ p3 in P =⇒ p3 ≥ p2 ≥ p1 in P op

which is nice! Things are even nicer in a linear order, for if P = {p1, p2, p3, . . . } is a linear
order, then we can write that

· · · pi ≤ pj ≤ pk · · ·
and hence in P op this becomes

· · · pi ≥ pj ≥ pk · · · .
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Example 2.1.4. Let (G, ·) be a group. In group theory one can formulate the opposite group
(Gop, ·op) as follows. Define (Gop, ·op) to be group with the same set of elements as G, whose
product ·op works as

g1 ·op g2 = g2 · g1.

Since both (G, ·) and (G, ·op) are groups, we can regard them both as one object categories.
What is interesting to realize is that under the categorical interpretation, they are opposite
categories of each other.

We thus see that dualizing a category simply involves changing the directions of the mor-
phisms on the objects. But can we dualize a functor?
Definition 2.1.5. Let F : C D be a functor and suppose f : A B is morphism in C. We
say F is a contravariant functor if F (f) : F (B) F (A).

This is in sharp contrast to a covariant functor, in which f : A B is sent to F (f) :
F (A) F (B).

We next introduce a few examples to demonstrate a contravariant functor.

Example 2.1.6. Let k be an algebraically closed field. Recall that An(k) is the set of tuples
(a1, a2, . . . , an) with ai ∈ k. In algebraic geometry, it is of interest to associate each subset
S ⊆ An(k) with the ideal

I(S) =
{
f ∈ k[x1, . . . , kn]

∣∣∣∣∣ f(s) = 0 for all s ∈ S
}
.

of k[x1, . . . , xn]. Observe that this is always non-empty since 0 ∈ I(S) for any S. In additional,
it is clearly an ideal of k[x1, . . . , xn], since for any p ∈ k[x1, . . . , xn],q ∈ I(S), we have that

(p · q)(s) = p(s) · q(s) = p(s) · 0 = 0 for all s ∈ S.

so that p · q ∈ I(S). Now it’s usually an exercise to show that if S1 ⊆ S2 are two subsets of
An(k), then one has that I(S2) ⊆ I(S1). Hence this defines a contravariant functor

I : Subsets(An(k)) Ideals(k[x1, . . . , xn]).

where Subsets(An(k)) is the category of subsets with inclusion morphisms, and Ideals(k[x1, . . . , xn])
is the category of ideals with inclusion ring homomorphisms.
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Example 2.1.7. Consider again k as an algebraically closed field. In algebraic geometry, one
often wishes to associated each ideal of k[x1, . . . , xn] with its “zero set”

Z(I) =
{
s = (a1, . . . , an) ∈ An(k)

∣∣∣∣∣ f(s) = 0 for all s ∈ I
}
.

It is usually an exercise to show that if I1 ⊆ I2 are two ideals, then Z(I2) ⊆ Z(I1). Hence we
see that this defines a contravariant functor

Z : Ideals(k[x1, . . . , xn]) Subsets(An(k)).

It is usually at the beginning of an algebraic geometry course that one will understand the
relationship between these two constructions, which themselves are secretly functors.

What follows is a very interesting example. In fact, this example is an example of a beautiful
concept of a sheaf, and it is usually used as a motivating example. But that is for later.

Example 2.1.8. Let X be a topological space, and consider the thin category Open(X),
which contains all open sets U ⊆ X, equipped with the inclusion function iU,X : U X.

For each U ∈ Open(X), define the set

C(U) = {f : U R | f is continuous.}

Note that if U ⊆ V are in Open(X), then we define the function ρU,V : C(V ) C(U) where

ρU,V (f : V R) = f
∣∣∣
U

: U R.

That is, ρU,V sends continuous, real-valued functions on V to such functions on U by restriction.
It is not difficult to show that this respects identity and composition requirements, so that we
have a contravariant functor

C(−) : Open(X) Set

for each topological space X.

What follows is another very important example.

Example 2.1.9. Let C be a locally small category. In this case, we know that each A ∈ C
induces the covariant functor

HomC(A,−) : C Set

which sends objects C to the set HomC(A,C). It is natural to ask if we may similarly define a
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functor
HomC(−, A) : C Set.

The answer is yes. We did not make this observation in the past for pedagogical reasons, since
it’s actually a contravariant functor (and we didn’t know what that was until now). We can
now safely say that HomC(−, A) is a contravariant functor.

We now comment on the relationship between contravariant and covariant functors.
Proposition 2.1.10. Let C, D be categories.

• Let F : C D be a contravariant functor. Then F corresponds to a contravariant functor
F : Cop D where for a f op : B A ∈ Cop,

F (f op : B A) = F (f : A B) = F (f) : F (B) F (A).

• Conversely, let F : C D be a covariant functor. Then F corresponds to a contravariant
functor F : Cop D where

F (f op : B A) = F (f : A B) = F (f) : F (A) F (B)

The above proposition allows us to treat any functor as covariant or contravariant. Thus, if
we don’t like the behavior of our functor on morphisms, we can find an equivalent functor that
behaves on morphisms in our preferred way.

Generally, covariant functors are easier to think about, so we often like to turn contravariant
functors into covariant functors.

Example 2.1.11. Recall that the functor

C(−) : Open(X) Set

is contravariant. What if we want to treat this as a covariant functor? Well, we can define the
functor

C(−) : Open(X)op Set

as follows. If U ⊆ V are open subsets of the topological space X, then let i : U V be the
inclusion. This is a morphism in Open(X). Hence, iop : V U is a morphism in Open(X)op.
Therefore, we define

C(iop : V U) = C(i : U V ) = ρU,V : C(V ) C(U).

Thus we see that this functor C acts the same way as C, except it behaves covariantly on the
morphisms now instead of contravariantly.
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2.2 Products of Categories, Functors

As one may expect, the product of categories can be easily defined.
Definition 2.2.1. Let C and D be categories. Then the product category C × D is the
category where
Objects. All pairs (C,D) with C ∈ Ob(C) and D ∈ Ob(D)
Morphisms. All pairs (f, g) where f ∈ Hom(C) and g ∈ Hom(D).
To define composition in this category, suppose we have composable morphisms in C and D as
below.

C

· · · C1 C2 C3 · · ·f

f ′◦f

f ′

D

· · · D1 D2 D3 · · ·g

g′◦g

g′

Then the morphisms (f, g) and (f ′, g′) in C × D are composable too, and their composition is
defined as (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

C × D

· · · (C1, D1) (C2, D2) (C3, D3) · · ·(f,g)

(f ′,g′)◦(f,g)=(f ′◦f,g′◦g)

(f ′,g′)

We also define the projection functors πC : C × D C and πD : C × D D where on
objects (C,D) and morphism (f, g), we have that

πC(C,D) = C πD(C,D) = D

πC(f, g) = f πD(f, g) = g

These projection functors have the following property. Consider a pair of functors F : B C
and G : B D. Then F and G determine a unique functor H : B C × D where

πC ◦H = F πD ◦H = G.

That is, we see that for any morphism f in B we have that H(f) = (F (f), G(f)). Hence the
following diagram commutes

B

C C × D D

F G
H

πC πD
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and we dash the middle arrow to represent that H is induced, or defined, by this process.
We can also take the product of two different functors.

Definition 2.2.2. Let F : C C ′ and G : D D′ be two functors. Then we define the
product functor to be the functor F ×G : C × D C ′ ×D′ for which

1. If (C,D) is an object of C × D then (F ×G)(C,D) = (F (C), G(D))

2. If (f, g) is a morphism of C × D then (F ×G)(f, g) = (F (f), G(g))

Additionally, we can compose the product of functors (of course, so long as they have the
same number of factors). Thus suppose G,F and G′, F ′ are composable functors. Then
observe that

(G×G′) ◦ (F × F ′) = (G ◦ F )× (G′ ◦ F ′).

Note that in this formulation we have that

πC′ ◦ (F ×G) = F ◦ πC πC′ ◦ (F ×G) = G ◦ πD

Hence, we have the following commutative diagram.

C C × D D

C ′ C ′ ×D′ D′

F

πC πD

F×G G

πC′ πD′

Again, the dashed arrow is written to express that F ×G is the functor defined by this process
and makes this diagram commutative.
Definition 2.2.3. If F is a functor such that F : B × C D, that is, its domain is a product
category, then F is said to be a bifunctor.

An example of a bifunctor is the cartesian product ×, which we can apply to sets, groups,
and topological spaces. In these instances we know that value of a cartesian product is always
determined uniquely by the values of the individual factors, which holds more generally for
bifunctors.
Proposition 2.2.4. Let B, C and D be categories. For B ∈ B and C ∈ C, define the functors

HC : B D KB : C D

such that HC(B) = KB(C) for all B,C. Then there exists a functor F : B × C D where
F (B,−) = KB and F (−, C) = HC for all B,C if and only if for every pair of morphisms
f : B B′ and g : C C ′ we have that

KB′(g) ◦HC(f) = HC′(f) ◦KB(g).

Diagrammatically, this condition is
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HC(B) = KB(C) HC′(B) = KB(C ′)

HC(B′) = KB′(g) HC′(B′) = KB′(C ′)

KB(g)

HC(f) HC′ (f)

KB′ (g)

The proof is left as an exercise for the reader.

Example 2.2.5. We now introduce what is probably one of the most important examples of
a bifunctor. Note that for any (locally small) category C, we have for each object A a functor.

Hom(A,−) : C Set

We also have a functor from Cop (we at the op simply for convenience) for each B ∈ Cop.

Hom(−, B) : Cop Set

As an application of the proposition, one can see that that these two functors act as the KB

and HC functors in the above proposition, and give rise to bifunctor

Hom : Cop × C Set.

This is because for any h : A A′ and k : B B′, the diagram,

Hom(A′, B) Hom(A,B)

Hom(A′, B′) Hom(A,B′)

h∗

k∗ k∗

h∗

commutes. Hence the proposition guarantees that Hom : Cop×C Set exists and is unique.

Example 2.2.6. Recall that for an integer n and for a ring R with identity 1 6= 0, we can
formulate the group GL(n,R), consisting of n × n matrices with entry values in R. As this
takes in arguments, we might guess that we have a bifunctor

GL(−,−) : N×Ring Grp

where N is a the discrete category with elements as natural numbers. This intuition is correct:
for a fixed ring R, we have a functor

GL(−, R) : N Grp
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while for a fixed natural number n we have a functor

GL(n,−) : Ring Grp.

Below we can visualize the activity of this functor:

... ... · · · ... · · ·
GL(1, S) GL(2, S) · · · GL(k, S) · · ·

... ... · · · ... · · ·
GL(1,Z) GL(2,Z) · · · GL(k,Z) · · ·
n = 1 n = 2 · · · n = k · · ·

R = Z

...

R = S

...

Above, we start with Z since the this is the initial object of the category Ring.

Now that we understand products of categories a functors, and we have a necessary and suf-
ficient condition for the existence of a bifunctor, we describe necessary and sufficient conditions
for the existence of a natural transformation.
Definition 2.2.7. Suppose F,G : B × C D are bifunctors. Suppose that there exists a
morphism η which assigns objects of B × C to morphisms of D. Specifically, η assigns objects
B ∈ B and C ∈ C to the morphism

η(B,C) : F (B,C) G(B,C).

Then η is said to be natural in B if, for all C ∈ C,

η(−,C) : F (−, C) G(−, C)

is a natural transformation of functors from B D.
With the previous definition, we can now introduce the necessary condition for a natural

transformation to exist between bifunctors.
Proposition 2.2.8. Let F,G : B × C D be bifunctors. Then there exists a natural trans-
formation η : F G if and only if η(B,C) is natural in B for each C ∈ C, and natural in C
for each B ∈ B.

Proof.
( =⇒ ) Suppose that η : F G is a natural transformation. Then every object (B,C) is

associated with a morphism η(B,C) : F (B,C) G(B,C) in D, and this gives rise to
the following diagram:
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(B,C)

(B′, C ′)

(f,g)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

Now let C ∈ C and observe that

η(−,C) : F (−, C) G(−, c)

is a natural transformation for all B. On the other hand, for any B ∈ B,

η(B,−) : F (B,−) G(B,−)

is a natural transformation for all C. Therefore, η is both natural in B and C for all
objects (B,C)

(⇐= ) Suppose on the other hand that η is a function which assigns objects (B,C) to a
morphism F (B,C) G(B,C) in D. Furthermore, suppose that η(B,C) is natural in
B for all C ∈ C and natural in C for all B ∈ B.
Consider a morphism (f, g) : (B,C) (B′, C ′) in B × C. Then since η is natural for
all B ∈ B, we know that for all C ∈ C,

η(−,C) : F (−, C) G(−, C)

is a natural transformation. In addition, η is natural for all C ∈ C since for all B ∈ B

η(B,−) : F (B,−) G(B,−)

is a natural transformation. Hence consider the natural transformation η(−,C) acting on
(B,C) and η(B′,−) acting on (B′, C). Then we get the following commutative diagrams.

F (B,C) G(B,C)

F (B′, C) G(B′, C)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

Observe that the bottom row of the first diagram matches the top row of the second.
Also note that f : B B′ and g : C C ′, and that the diagrams imply the equations

G(f, 1C) ◦ η(B,C) = η(B′,C) ◦ F (f, 1C) (2.1)
G(1B′ , g) ◦ η(B′,C) = η(B′,C′) ◦ F (1B′ , g). (2.2)
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Now suppose we compose equation (2.1) with G(1B′ , g) on the left. Then we get that

G(1B′ , g) ◦G(f, 1C) ◦ η(B,C) =
replace via equation (2)︷ ︸︸ ︷
G(1B′ , g) ◦ η(B′,C) ◦F (f, 1C)

= η(B′,C′) ◦ F (1B′ , g) ◦ F (f, 1C)
= η(B′,C′) ◦ F (1B′ ◦ f, g ◦ 1C)
= η(B′,C′) ◦ F (f, g).

where in the second step we applied equation (2.2), and in the third step we composed
the morphisms. Also note that we can simplify the left-hand side since

G(1B′ , g) ◦G(f, 1C) = G(1B′ ◦ f, g ◦ 1C) = G(f, g).

Therefore, we have that

G(f, g) ◦ η(B,C) = η(B′,C′) ◦ F (f, g)

which implies that eta itself is a natural transformation. Specifically, it implies the
following diagram.

(B,C)

(B′, C ′)

(f,g)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

�

Note: A way to succinctly prove the reverse implication of the previous proof is as follows.
Since we know the diagrams on the left are commutative, just "stack" them on top of each
other to achieve the diagram in the upper right corner, and then "squish" this diagram down
to obtain the third diagram in the bottom right.
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F (B,C) G(B,C)

F (B′, C) G(B′, C)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

F (B,C) G(B,C)

F (B′, C) G(B′, C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,1C) G(f,1C)

η(B′,C)

F (1B′ ,g) G(1B′ ,g)

η(B′,C′)

F (B,C) G(B,C)

F (B′, C ′) G(B′, C ′)

η(B,C)

F (f,g) G(f,g)

η(B′,C′)

This is essentially what we did in the proof, although this is more crude visualization of
what happened, and we were more formal throughout the process.

Exercises

1. Let C and D be categories. Prove that (C × D)op ∼= Cop ×Dop.
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2.3 Functor Categories

In the proof for the last proposition, we used a trick of forming a desired natural transfor-
mation by composing two composable natural transformations. Hence, we see that natural
transformations can be “composed.” We refine this notion as follows.

Let C and D be categories and consider three functors F,G,H : C D. Suppose further
that we have two natural transformations σ, τ as below:

F G Hσ τ

(This might seem like a weird way to write this, but we are trying to hint at something.) Using
these two natural transformations, we can define a natural transformation

τ · σ : F H

where, for each C ∈ C, we define

(τ · σ)C = τC ◦ σC : F (C) H(C).

Visually, we can picture what we are doing as follows. For a given morphism f : A B in C,
we define the morphism (τ · σ)C as

F (A) F (B)

G(A) G(B)

H(A) H(B)

(τ · σ)A

σA

F (f)

σB

(τ · σ)B

τA

G(f)

τB

H(f)

Thus, we see that natural transformations can be “composed,” and we can thus ask: If we view
functors as objects, and view natural transformations as morphisms, do we get a category? The
answer is yes.
Definition 2.3.1. Let C and D be small categories and consider set of all functors F : C D.
Then the functor category, denoted as DC or Fun(C,D), is the category where
Objects. Functors F : C D
Morphisms. Natural transformations η : F G

Functor categories are extremely useful, as we shall see that they’re the categorical version
of representations.

When we think of representations, we usually think of a group homomorphism ρ : G
GLn(V ) for some vector space V over a field k. However, suppose we wanted to be a real smart-
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ass and say “Well, can’t we regard ρ as actually a functor between two one-object categories
whose morphisms are all isomorphism?” The answer is yes!

What this then means is that the category of representations of a group G is actually a
functor category. Specifically,

Fun(G,GLn(V )) ∼= R-Mod.

Hence in some cases it helps to think of Fun(C,D) as a category of representations of C. This
makes sense, since that is really what a functor is. A functor preserves composition; and if
we stop thinking like the set theorists, we can realize that composition controls a great deal
of structure in a category C. Hence a functor F : C D “represents"" that structure in a
category D.

Example 2.3.2. Let 1 be the one element category with a single identity arrow. Then for any
category C, the functor category C1 is isomorphic to C. This is because each functor F : 1 C
simply associates the element 1 ∈ 1 to an element C ∈ C, and the identity 11 : 1 1 to the
identity morphism 1C in C.

Example 2.3.3. Let 2 be the category consisting of two elements, containing the two identities
and one nontrivial morphism between the objects.

1 2

id1

f

id2

The category 2.

Now consider the functor category C2 where C is any category. Each functor F : 2 C maps
the pair of objects to objects F (1) and F (2) in C. However, since functors preserve morphisms,
we see that

f : 1 2 =⇒ F (f) : F (1) F (2).

This is what each F ∈ C2 does. Hence, every morphism g ∈ Hom(C) corresponds to an element
in C2. Hence, we call C2 the category of arrows of C.

Proof. Let g : C C ′ be any morphism between objects C,C ′ in C. Construct the element
G ∈ C2 as follows: G(1) = C, G(2) = C ′ and G(f) : G(1) G(2) = g. Hence, Hom(C) and
C2 are isomorphic. Moreover, Hom(C) determines the members of C2.

A crude way to visualize this proof is imaging 1 2 is a "stick" with 1 and 2 on either
end, and so the action of any functor is simply taking the stick and applying it to anywhere on
the direct graph generated by the category C. Hence, this is why we say Hom(C) determines
the functor category C2. �
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Example 2.3.4. Let X be a set. Hence, it is a discrete category, which if recall, it’s objects
are elements of X and the morphisms are just identity morphisms.

Now consider {0, 1}X , the category of functors F : X {0, 1}. Then every functor assigns
each element of x ∈ X to either 0 or 1, and assigns the morphism 1x : x x to either 10 : 0 0
or 11 : 1 1.

One way to view this is to consider P(X), and for each S ∈ P , assign x to 1 if x ∈ S or x
to 0 if x 6∈ S. All of these mappings may be described by elements of P , but we can also realize
that each of these mappings correspond to the functors in {0, 1}X . Hence, we see that {0, 1}X
is isomorphic to P(X).

Example 2.3.5. Recall from Example ?? that, given a group G and a ring R (with identity),
we can create a group ring R[G] with identity, in a functorial way, establishing a functor

R[−] : Grp Ring.

However, we then noticed that the above functor establishes a process where we send rings R
to functors R[−] : Grp Ring. It turns out that this process is itself a functor, and we now
have the appropriate language to describe it:

F : Ring RingGrp

Specifically, let ψ : R S be a ring homomorphism. Now observe that ψ induces another ring
homomorphism

ψ∗G : R[G] S[G]
∑

g∈G
agg 7!

∑

g∈G
ϕ(ag)g.

As a result, we see that such a ring homomorphism induces a natural transformation. To show
this, let ϕ : G H be a group homomorphism. Then observe that we get the diagram in the
middle.

G

H

ϕ

R[G] S[G]

R[H] S[H]

R(ϕ)

ψ∗G

S(ϕ)

ψ∗H

∑
g∈G agg

∑
g∈G ψ(ag)g

∑
g∈G agϕ(g) ∑

g∈G ψ(ag)ϕ(g)

However, we can follow the elements as in the diagram on the right, which shows us that
the diagram commutes. Hence we see that ψ∗ is a natural transformation between functors
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R[−] S[−]. Overall, this establishes that we do in fact have a functor

F : Ring RingGrp

which we wouldn’t be able to describe without otherwise introducing the notion of a functor
category.

Example 2.3.6. Let M be a monoid category (one object) and consider the functor category
SetM . The objects of SetM are functors F : M Set, each of which have the following data:

F (f) : F (M) F (M)

where f : M M is an morphism inM . Now if we interpret ◦ as the binary relation equipped
on M , we see that for any g : M M ,

F (g ◦ f) = F (g) ◦ F (f)

by functorial properties. Hence, each functor F mapsM to a set X which induces the operation
of M on X. Therefore the objects of SetM are other monoids X in Set equipped with the
same operation as M and as well as the morphisms between such monoids.
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2.4 Vertical, Horizontal Composition; Interchange Laws

In the previous section, we considered the idea of forming a composition of natural transforma-
tions, and we verified that this formed a valid natural transformation. That is, if we have three
functors F,G,H : C D between two categories C and D, and if σ : F G and τ : G H

are natural transformations, then we can form the natural transformation

(τ ◦ σ) : F H.

We call such a type of composition as vertical compositions of natural transformations, since
the idea can be captured in the following diagram.

σ

τ
C D

We can also perform a different, but similar type of composition between natural transfor-
mations. Suppose F,G : B C and F ′, G′ : C D are functors between categories B, C, and
D. Furthermore, suppose we have natural transformations η : F G and η′ : F ′ G′. Then
we have diagram such as the following.

η η′B C D
F

G

F ′

G′

Now let B be an object of B. There are two ways we can transfer this object to an object
of C; namely, via mappings of F and G. Thus F (B) and G(B) are two objects of C. Since
η : F G is a natural transformation between these objects, we see that there’s a way of
mapping between these two elements in C:

η(B) : F (B) G(B).

Hence, we have two objects in C and a morphism in between them. Hence, we know that the
natural transformation η′ : F ′ G′ implies the following diagram commutes.

F (B)

G(B)

η(B)

F ′ ◦ F (B) G′ ◦ F (B)

F ′ ◦G(B) G′ ◦G(B)

η′F (B)

F ′◦η(B) G′◦η(B)

η′G(B)

Note that in the last diagram, all of the objects and morphisms between them exist in D. The
easiest way to see why this diagram commutes is to go back directly to the definition of a
natural transformation; namely, the pair of objects along with their morphism on the left imply
the commutativity of the diagram on the right.
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This can be done in general for categories B, C, and D which have functors F,G : B C
and F ′, G′ : C D associated with natural transformations η : F G and η′ : F ′ G′.
Furthermore, it holds for all B ∈ B.

Note further that this diagram is similar to a diagram which represents a natural transfor-
mation; but between which functors? If we look closely, we see that it is between F ◦ F ′ and
G ◦G′.

This leads us to make the following formulaic definition: For natural transformations η :
F G and η′ : F ′ G′ such that F,G : B C and F ′, G′ : C D, then for B ∈ B we
define their "horizontal" composition as the diagonal of the above diagram; that is,

(η ◦ η′)B = G′(η(B)) ◦ η′F (B) = η′(G(B)) ◦ F ′(η(B)).

The above diagram doesn’t quite show that η◦η′ : F ′◦F G◦G′ is a natural transformation.
In order to do this, we need to start from two objects in B and consider a morphism between
them.
Proposition 2.4.1. The function η ◦ η′ : F ◦F ′ G ◦G′ is a natural transformation between
the functors F ′ ◦ F,G′ ◦G : B D.

Proof. To show this, we consider a morphism f : B B′ between two objects B and B′ in
B. We then claim that the following diagram is commutative:

B

B′

f

F ′ ◦ F (B) F ′ ◦G(B) G′ ◦G(B)

F ′ ◦ F (B′) F ′ ◦G(B′) G′ ◦G(B′)

F ′◦η(B)

F ′◦F (f)

η′◦G(B)

F ′◦G(f) G′◦G(f)

F ′◦η(B′) η′◦η(B′)

First, observe that the left square is commutative due to the fact that η is a natural transfor-
mation from F to G. Therefore, it produces a commutative square diagram, and we obtain
the above left square diagram by applying F ′ to the commutative diagram produced by
η : F G.

The right square in the diagram is obtained by the fact that η′ is a natural transformation
between functors F ′ and G′. Hence the diagram is commutative, and it acts on the objects
G(B) and in C. Therefore, we see that η ◦ η′ is a natural transformation. �

Thus we see that we have "horizontal" and "vertical" notions of composing natural trans-
formations. Let us denote "horizontal" transformations as ◦ and "vertical" transformations as ·
between natural transformations.

It is also notationally convenient to denote functor and natural transformation compositions
as

F ′ ◦ τ : F ′ ◦ F F ′ ◦ T η′ ◦G : F ′ ◦G G′ ◦G
which are two additional natural transformations. (Remember we showed that the left square
in the commutative diagram of the previous proof commuted by observing that it was obtained
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by the commutative diagram produced by the natural transformation η and composing it with
F ′? What we really showed is that F ′ ◦ η is a natural transformation, since this natural
transformation described that square. Similarly, η′ ◦ G is the natural transformation which
represents the right square of the commutative diagram in the previous proof.)

With the above notation, we can then write that

η′ ◦ η = (G′ ◦ η) · (η′ ◦ F ) = (η′ ◦G) · (F ′ ◦ η).

This idea of ours can be extended to a more general situation. Suppose we have instead three
categories B, C, and D and where F,G,H : B C and F,G,H : C D are functors associated
with natural transformations η : F G, σ : G H, and η′ : F ′ G′, σ′ : G′ H ′. The
following diagram may be more helpful than words:

η

σ

η′

σ′
B C D

F

H

F ′

H′

Note we’ve omitted the label of G and G′ on the middle horizontal arrows since they don’t
exactly fit in there when we include the labels for the natural transformations.

Now suppose we have an object B in B. Then we can create three objects F (B), G(B) and
H(B) in C, and we may interchange between these objects via the given natural transformations.
Specifically, η(B) : F (B) G(B) and σ(B) : G(B) H(B). However, we also know that
η′, σ′ are natural transformations between C and D, and hence imply the following commutative
diagram.

F (B)

G(B)

H(B)

η(B)

σ(B)

F ′ ◦ F (B) G′ ◦ F (B) H ′ ◦ F (B)

F ′ ◦G(B) G′ ◦G(B) H ′ ◦G(B)

F ′ ◦H(B) G′ ◦H(B) H ′ ◦H(B)

η′F (B)

F ′◦η(B)

σ′F (B)

G′◦η(B) H′◦η(B)

η′G(B)

F ′◦σ(B)

σ′G(B)

G′◦σ(B) H′◦σ(B)

η′H(B) σ′H(B)

Suppose we start at the upper left corner and want to achieve the value at the bottom right.
There are two ways we can do this: We can travel within the interior of the diagram, or we can
travel on the outside of the diagram.

In traveling on the interior of the diagram, note that the composition of the arrows of the
upper left square is η′ ◦ η. In addition, composition of the arrows of the bottom right square is
σ′ ◦ σ.

In traveling on the exterior of the diagram note that the composition of the top row is η′ ·σ′
and composition of the right most vertical arrows is η · σ. Since both paths achieve the same
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value, we see that
(η′ · σ′) ◦ (η · σ) = (η′ ◦ η) · (σ′ ◦ σ)

which is known as the Interchange Law.
This leads us to make the following definition.

Definition 2.4.2. We define a double category to be a set of arrows which obey two different
forms of composition, generally denoted as ◦ and ·, which together satisfy the interchange law.

Furthermore, a 2-category is a double category in which · and ◦ have the same exact
identity arrows.
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2.5 Slice and Comma Categories.

In this section we introduce comma categories, which serve as a very useful categorical con-
struction. The reason why it is so useful is because the notion of a comma category has the
potential to simplify an otherwise complicated discussion. As they can be constructed in any
category, and because they contain a large amount of useful data, they are frequently used as
an intermediate step in more complex categorical constructions. Thus, while the concept is
“simple,” they nevertheless appear in all kinds of complicated discussions in category theory.

Definition 2.5.1. Let C be a category and suppose A is an object of C. We define the slice
category (with A over C), denoted (A # C), as the category
Objects. All pairs (C, f : A C) for all C ∈ C and morphims f : A C. In other words,

the objects are all morphisms in C which originate at A.
Morphisms. For two objects (C, f : A C) and (C ′, f ′ : A C ′), we define

h : (C, f) (C ′, f ′)

as a morphism between the objects, where h : C C ′ is a morphism in our category
such that f ′ = h ◦ f . Alternatively we can describe the homset more directly:

Hom(A#C)

(
(f, C), (f ′, C ′)

)
= {h : C C ′ ∈ C | f ′ = h ◦ f}.

At this point you may be a bit overloaded with notation if this is the first time you’ve seen
this before. You need to figure out how this is a category (what’s the identity? composition?)
and ultimately why you should care about this category. To aid your understanding, a picture
might help.

We can represent the objects and morphisms of the category (A # C) in a visual manner.

Objects (C, f):

A

C

f
Morphisms h : (C, f) (C ′, f ′)
are given by h : C C ′ such that

A

C C ′

f f ′

h

Now, how does composition work? Composition of two composable morphisms h : (f, C)
(f ′, C ′) and h′ : (f ′, C ′) (f ′′, C ′′) is given by h′ ◦ h : (f, C) (f ′′, C ′′) since clearly

f ′′ = h′ ◦ f ′ and f ′ = h ◦ f =⇒ f ′′ = h′ ◦ (h ◦ f) = (h′ ◦ h) ◦ f.

We can visually justify composition as well. If we have two commutative diagrams as on the
left, we can just squish them together to get the final commutative diagram on the right.
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A

C C ′

f f ′

h

and

A

C ′ C ′′

f ′ f ′′

h′

implies

A

C C ′′

f f ′′

h′◦h

Hence, we see that h′ ◦ h : (f, C) (f ′′, C ′′) is defined whenever h′ and h are composable
as morphisms of C.

One use of comma categories is to capture and generalize the notion of a pointed category.
Such pointed categories include the category of pointed sets Set∗ or the category of pointed
topological spaces Top∗, etc.

We’ve seen, in particular on the discussion of functors, the necessity for pointed categories.
For example, we cannot discuss “the” fundamental group π1(X) of a topological space X (unless
X is path connected, but still only up to isomorphism). To discuss a fundamental group in a
topological space X, one needs to select a base point x0. As we saw in Example 1.7, π1 is not
a functor Top Grp, but is rather a functor

π1 : Top∗ Grp

where Top∗, which consists of pairs (X, x0) with x0 ∈ X, is the category of pointed topological
spaces.

Similarly, it makes no sense to talk about “the” tangent plane of a smooth manifold. Such
an association requires the selection of a point p ∈ X to calculate Tp(M). So, as we saw in
Example ??, this process is not a functor from DMan to Vect, but is rather a functor

T : DMan∗ Vect

where DMan∗, which consists of pairs (M, p) with p ∈ M , is the category of pointed smooth
manifolds. This now motivates the next two examples.

Example 2.5.2. Consider the category Top∗ where
Objects. The objects are pairs (X, x0) with X a topological space and x0 ∈ X.
Morphisms. A morphism f : (X, x0) (Y, y0) is any continuous function f : X Y such

that y0 = f(x0).
Recall that the one point set {•} is trivially a topological space. Then we can form the category
({•} # Top). The claim now is that

({•} # Top) ∼= Top∗.

Why? Well, an object of ({•} # Top) is simply a pair (X, f : {•} X). Observe that

f(•) = x0 ∈ X,

for some x0 ∈ X. So, the pair (X, f : {•} X) is logically equivalent to a pair (X, x0) with
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x0 ∈ X. That is, a continuous function from the one point set into a topological space X is
equivalent to simply selecting a single point x0 ∈ X. Hence, on objects it is clear why we have
an isomorphism.

Now, a morphism in this comma category will be of the form p : (X, f1 : {•} X) (Y, f1 :
{•} Y ). Specifically, it is a continuous function p : X Y such that the diagram below
commutes.

{•}

X Y

f1 f2

p

In other words, if f1(•) = x0 and f2(•) = y0, it is a continuous function p : X Y such that
f(x0) = y0. This is exactly a morphism in Top∗! We clearly have a bijection as claimed.

The above example generalizes to many pointed categories, some of which are

• DMan∗ ∼= (• # DMan)

• Set∗ ∼= (• # Set)
• Grp∗ ∼= (• # Grp)

We now briefly comment for any slice category (A # C) built from a category C, we can
construct a “projection” functor

P : (A # C) C
where on objects P (C, f : A C) = C and on morphisms P (h : (C, f) (C ′, f ′)) = h :
C C ′. Clearly, this functor is faithful, but it is generally not full. Such a projection functor
is used in technical constructions involving slice categories as it has nice properties; we will
make use of it later when we discuss limits.

Next,we introduce how we can also describe the category of an objects under another cate-
gory.
Definition 2.5.3. Let C be a category, and B an object of C. Then we define the category B

under C, denoted as (C # B) as follows.
Objects. All pairs (C, f) where f : C B is a morphism in C. That is, the objects are

morphisms ending at B.
Morphisms. For two objects (C, f : C B) and (C ′, f ′ : C ′ B), we define

h : (C, f) (C ′, f ′)

to be a morphism between the objects to correspond to a morphism h : C C ′ in C
such that f = f ′ ◦ h.
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Composition of functions h : (f, C) (f ′, C ′) and h′ : (f ′, C ′) (f ′′, C ′′) exists whenever
h′ ◦ h is defined as morphisms in C. Again, we can represent the elements of the category in a
visual manner

Objects (C, f):

C

B

f Morphisms h : (f, C) (f ′, C ′)

C C ′

B

h

f f ′

The following is a nice example that isn’t traditionally seen as an example of a functor.

Example 2.5.4. Let (G, ·) and (H, ·) be two groups, and consider a group homomorphism
ϕ : (G, ·) (H, ·). Abstractly, this is an element of the comma category (Grp # H).

Now for for every group homomorphism, we may calculate the kernal of Ker(ϕ) = {g ∈ G |
ϕ(g) = 0}. This is always a subgroup of G. What is interesting is that, from the perspective
of slice categories, this process is functorial:

Ker(−) : (Grp # H) Grp.

To see this, we have to understand what happens on the morphisms. So, suppose we have two
objects (G,ϕ : G H) and (K,ψ : K H) of (Grp # H) and a morphism h : G K

between the objects.

G K

H

h

ϕ ψ

Then we can define Ker(h) : Ker(ϕ) Ker(ψ), the image of h under the functor, to be
the restriction h|ker(ϕ) : Ker(ϕ) Ker(ψ). This is a bonafied group homomorphism: by the
commutativity of the above triangle, if g ∈ G then ϕ(g) = ψ(h(g)). Hence, if ϕ(g) = 0, i.e.,
g ∈ Ker(ϕ), then ψ(h(g)) = 0, i.e., h(g) ∈ Ker(ψ). So we see that our proposed function makes
sense.

What this means is that the commutativity of the above triangle forces a natural relationship
between the kernels of ϕ and ψ; not only as a function of sets, but as a group homomorphism.
Therefore, the kernel of a group homomorphism is actually a functor from a slice category.

Example 2.5.5. In geometry and topology, one often meets the need to define a (−)-bundle.
By (−) we mean vector, group, etc. That is, we often want topological spaces to parameterize
a family of vector spaces or groups in a coherent way.
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For example, on the above left we can map the Möbius strip onto S1 in such a way that
the inverse image of each x ∈ S1 is homeomorphic to the interval [0, 1]. Hence, each point of
x ∈ S1 carries the information of a topological space, specifically one of [0, 1].

On the right, we can recall that S2 is a differentiable manifold, and so each point p has a
tangent plane Tp(S2), which is a vector space. Hence every point on S2, or more generally for
any differentiable manifold, carries the information of a vector space.

In general, for a topological space X, we define a bundle over X to be a continuous map
p : E X with E being some topological space of interest. If p : E X an p′ : E ′ X are
two bundles, a morphism of bundles q : p p′ is given by a continuous map q : E E ′

such that
p = p′ ◦ q.

Hence we see that a bundle over a topological space X is an element of the comma category
Top/X, and a morphism of bundles is a morphism in the comma category. We therefore see
that Top/X can be interpreted as the category of bundles of X.

One particular case of interest concerns vector bundles. Let E,X be topological spaces.
Recall that a vector bundle consists of a continuous map π : E X such that

1. π−1(x) is a finite-dimensional vector space over some field k

2. For each p ∈ X, there is an open neighborhood Uα and a homeomorphism

ϕα : Uα × Rn −!∼ π−1(Uα)

with n some natural number. We also require that π ◦ ϕα = 1Uα .

As we might expect, a morphism of vector bundles between π1 : E X and π2 : E ′ X

is given by a continuous map q : E E ′ such that for each x ∈ X, q
∣∣∣
π−1

1 (x)
: π−1

1 (x) π−1
2 (x)

is linear map between vector spaces.
To realize this in real mathematics, we can take the classic example of the tangent bundle

on a smooth manifold M (if you’ve seen this before, hopefully it is now clear why the word
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"bundle" is here). In differential geometry this is defined as the set

TM = {(p, v) | p ∈M and v ∈ Tp(M)}

where we recall that Tp(M) is the tangent (vector) space at a point p ∈ M . Since M is a
smooth manifold there is a differentiable structure (Uα,xα : Uα M) which allow us to define
a map

yα : Uα × Rn TM

((x1, . . . , xn), (u1, . . . , un)) 7!
(
xα(x1, . . . , xn),

n∑

i=1
ui

∂

∂xi

)
.

This actually provides a differentiable structure on TM , demonstrating it too is a smooth
manifold (see Do Carmo). Hence we see that TM is in fact a topological space. We then see
that the mapping π : TM M where

π(p, v) = p and π−1(x) = Tx(M).

is a continuous mapping. Hence we’ve satisfied both (1.) and (2.) in the the definition of a
vector bundle. The other properties can be easily verified so that this provides a nice example
of a vector bundle.

We can also formulate categories of objects under and over functors.
Definition 2.5.6. Let C be a category, C an object of C and F : B C a functor. Then we
define the category C over the functor F , denoted as (C # F ), as follows.
Objects. All pairs (f,B) where B ∈ Obj(B) such that

f : C F (B)

where f is a morphism in C.
Morphisms. The morphisms h : (f,B) (f ′, B′) of (C # F ) are defined whenever there

exists a h : B B′ in B such that f ′ = F (h) ◦ f .
Representing this visually, we have that

Objects (f,B):

C

F (B)

f Morphisms h : (f,B) (f ′, B′)

C

F (B) F (B′)

f f ′

F (h)

Composition of the morphisms in (C # F ) simply requires composition of morphisms in B.
One can easily construct the category C under the functor F , (F # C), in a completely
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analogous manner as before. But we’ll move onto finally defining the concept of the comma
category.
Definition 2.5.7. Let B, C,D be categories and let F : B D and G : C D functors. That
is,

B D C.F G

Then we define the comma category (F # G) as follows.
Objects. All pairs (B,C, f) where B,C are objects of B, C, respectively, such that

f : F (B) G(C)

where f is a morphism in D.
Morphisms. All pairs (h, k) : (B,C, f) (B′, C ′, f ′) where h : B B′ and k : C C ′ are

morphisms in B, C, respectively, such that

f ′ ◦ F (h) = G(k) ◦ f.

As usual, we can represent this visually via diagrams:

Objects (B,C, f):

F (B)

G(C)

f Morphisms (h, k)

F (B) F (B′)

G(C) G(C ′)

f

F (h)

f ′

G(k)

where in the above picture we have that (h, k) : (B,C, f) (B′, C ′, f ′). Since functors
naturally respect composition of functions, one can easily define composition of morphism
(h, k) and (h′, k′) as (h ◦h′, k ◦ k′) whenever h ◦h′ and k ◦ k′ are defined as morphisms in B and
C, respectively.

Exercises

1. Let C be a category with initial and terminal objects I and T .

i. Show that (C # T ) ∼= C.
i. Also show that (I # C) ∼= C.

2. Consider again a group homomorphism ϕ : G H, but this time consider the image
Im(ϕ) = {ϕ(g) | g ∈ G}. Show that this defines a functor

Im(−) : (G # Grp) Grp
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where on morphisms, a morphism

h : (H,ϕ : G H) (K,ϕ : G K)

is mapped to the restriction h|Im(ϕ) : Im(ϕ) Im(ψ).

In some sense, this is the “opposite” construction of the kernel functor we introduced.
Instead of taking the kernel of a group homomorphism, we can take its image.

3. Here we prove that the processes of imposing the induced topology and the coinduced
topology are functorial. Moreover, the correct language to describe this is via slice
categories.

i. Let X be a set and (Y, τ) a topological space. Denote U : Top Set to be the
forgetful functor. Given any function f : X U(Y ), we can use the topology on
Y to impose a topology τX on X:

τX = {U ⊆ X | f(U) is open in Y }.

This is called the induced topology on X. So, we see that (by abuse of notation)
the function f : X U(Y ) is now a continuous function f : (X, τX) (Y, τY ).

Prove that this process forms a functor Ind : (Top # U(Y )) (Top # Y ).

ii. This time, let (X, τ) be a topological space, Y a set, and consider a function f :
U(X) Y . We can similarly impose a topology τY on Y :

τY = {V ⊆ Y | f−1(V ) is open in X}.

This is called the coinduced topology on Y . Show that this is also a functorial
process.

4. i. Let X, Y be topological spaces with ϕ : X Y a continuous function. Show
that this induces a functor ϕ∗ : (Top # X) (Top # Y ) where on objects (f :
E X) 7! (ϕ ◦ f : E Y ).

ii. Let C be a category. Show that we generalize (i) to define a functor

(C # −) : C Cat

where A 7! (C # A).

ii. Let Cat∗ be the pointed category of categories which we describe as

Objects. All pairs (C, A) with C a category and A ∈ C
Morphisms. Functors F which preserve the objects.
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Can we overall describe the construction of a slice category as a functor

(− # −) : Cat∗ Cat

where (C, A) 7! (C # A)?

5. In this exercise we’ll see that slice categories describe intervals for thin categories.

i. Regard R as a thin category, specifically as one with a partial order. For a given
a ∈ R, describe the thin category (a # R).

ii. Suppose P is a partial order (so that p ≤ p′ and p′ ≤ p implies p = p′). Describe in
general the categories (p # P ) and (P # p).
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2.6 Graphs, Quivers and Free Categories

In studying category it is often helpful to imagine the objects and morphisms in action as vertices
and edges corresponding to a graph. In fact, such a pictorial representation of a category is not
even incorrect; one can pass categories and graphs from one to the other. To speak of this, we
first review some terminology.
Definition 2.6.1. A (small) graph G is a set of vertices V (G) and a set edges E(G) such that
there exists an assignment function

∂ : E(G) V (G)× V (G)

which assigns every edge to the ordered pair containing its endpoints.
On the other hand, a directed graph is a graph G where E(G) is now a set of 2-tuples

(v1, v2). This allows each edge of E(G) to have a specified direction. In this case, the assignment
function has the form ∂ : E(G) V (G).

Now, how do we formulate a morphism between two graphs?
Definition 2.6.2. A graph homomorphism between two graphs G and H is a function
f : G H which induces maps fV : V (G) V (H) and fE : E(G) E(H) where if
∂(e) = (v1, v2), then

∂ ◦ fE(e) = (fV (v1), fV (v2)).

fV

e e′

fE

v2

v1

v′2

v′1

In some sense, this behaves almost like a functor. This observation will become important
later. Now since we have a consistent way to speak of graphs and their morphisms, we can form
the category Grph where the objects are small graphs and the morphisms are graph morphisms
as described above.

Finally we introduce the concept of a quiver, which we will see is basically the skeleton of
a category.
Definition 2.6.3. A quiver is a directed graph G which allows multiple edges between vertices.
Instead of a function ∂, a quiver is equipped with source and target functions

s : E(G) V (G) t : E(G) V (G).

So a quiver is a 4-tuple (E(G), V (G), s, t). Now as before, a morphism f : Q Q′ between
quivers (E(Q), V (Q), s, t) and (E(Q′), V (Q′), s′, t′) is one which preserves edge-vertex relations.
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Thus, it is a pair of functions fE : E(Q) E(Q′) and fV : V (Q) V (Q)′ such that

fV ◦ s = s′ ◦ fE fV ◦ t = t′ ◦ fE.

v1 v3
v2

e1

e2

e4

e3

Now that we have all of those definitions out of the way, what’s really going on here? A quiver
can be abstracted as a pair of objects and morphisms.

E V
s

t

If we let Cop be the category with two objects, two nontrivial morphisms and two identity
morphisms as below

1 0
f

g

then we see that a quiver is a functor F : Cop Set. With that said, we can define
the category of quivers Quiv, which, based on what we just showed, is a functor category
with objects F : Cop Set. This allows us to interpret quiver homomorphisms as natural
transformations.

Now why on earth do we care about these things called quivers? The reason is because the
underlying structure of small categories take the form of a quiver. For example, the category
on the left below can be turned into a quiver, as on the right, after "forgetting" composition
and identity morphisms.

A

C B

f

1A

h

g

f◦h

f◦g
j

1C 1B

•

• •

In general, since categories allow multiple arrows between objects, we can construct a for-
getful functor which forgets composition and identity arrows.

U : Cat Quiv.
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Note that if F : C C ′ is a functor then U(F ) : U(C) U(C ′) is in fact a well-behaved
morphism between two quivers. Recall that the construction of a graph homomorphism is
basically a functor as we’ve known to so far.

Not only can we forget categories to generate quivers, we can generate categories using the
skeletal structure of a quiver. This leads to the concept of a free category; the concept is no
different than the concept of, say, a free group generated by a set X.
Definition 2.6.4. Let Q be a quiver with vertex set V and edge set E. We define the free
category generated by Q as the category with
Objects. The set V
Morphisms. The paths of the quiver.
Precisely, a path is any sequence of edges and vertices

v0 v1 · · · vn
e0 e1 en−1

with composition of paths defined in the intuitive way:

(v0 v1 · · · vn)e0 e1 en−1 ◦ (vn w0 w1 · · · wm)e′0 e′1 e′2 e′m

= v0 v1 · · · vn w0 w1 · · · wm
e0 e1 en−1 e′0 e′1 e′2 e′m

When we generate the free category, we also remember to add identity arrows to each vertex.

Since for each quiver Q, we can define a free category FC(Q) on Q, we can realize that this
mapping is functorial. That is, we can define a functor

FC : Quiv Cat

where it maps on objects and morphisms as

Q 7−! FC(Q)
(f : Q Q′) 7−! (FC(f) : FC(Q′) FC(Q)).

That is, quiver homomorphisms can map to functors FC(f) between the free categories
generated by the respective quivers.

Now, what is the relationship between a quiver Q and the quiver U(FC(Q))? There must
exist an injection i : Q U(F (Q)) which sends Q to the skeleton of U(FC(Q)). It turns out
that this morphism is universal from Q to U .
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Theorem 2.6.5. Let Q be a quiver. Then there is a graph homomorphism i :
Q U(FC(Q)) such that, for any other graph homomorphism ϕ : Q U(C) with C a
category, there exists a unique functor F : FC(Q) C where U(F ) ◦ i = ϕ. That is,

Q U(FC(Q))

U(C)

i

ϕ U(F )

FC(Q)

C

F

This is an example of a universal arrow; the dotted lines are the morphisms which are forced
to exist by the conditions of the diagram, which is the idea of a universal element.

Proof. Denote each morphism or path in FC(Q) of length n

v0 v1 · · · vn
e0 e1 en−1

as (v0, e0e1 · · · en−1, vn) : v0 vn. Now define the inclusion i : Q U(FC(Q)) where each
vertex and edge is sent identically. That is, vertices v map to v in FC(Q), and morphisms are
sent identically and for each edge e : v v′:

i(e : v v′) = (v, e, v′).

An important observation to make is the fact that every morphism (v0, e0e1 · · · en−1, vn) :
v0 vn) in FC(Q) is a composition of length 2-morphism:

v0 v1 · · · vn
e0 e1 en−1

= (v0 v1)e0 ◦ (v1 v2)e1 ◦ · · · ◦ (vn−1 vn)en−1

Therefore, for any graph homomorphism ϕ : Q U(C), we can create a unique functor
F : FC(Q) C where

v 7−! ϕ(v)
(v0, e0e1 · · · en−1, vn) : v0 vn 7−! ϕ(e0 : v0 v1) ◦ ϕ(e1 : v1 v2) ◦ · · · ◦ ϕ(en−1 : vn−1 vn)

which then gives us

U(F ) ◦ i = ϕ

as desired. �
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2.7 Quotient Categories

The quotient category is a concept that generalizes the ideas of forming quotient groups, rings,
modules, and even topological spaces. The core idea of obtaining a quotient "object" revolves
around the concept of an equivalence class.

For example, in constructing the quotient group, one can go about constructing it in two
different ways. One is easy, in which you simply form the concept of a coset, and then observe
that nice things happen when you make cosets with normal subgroups. The hard way is to
construct an equivalence relation, which gives rise to what we recognize as the concept of a
coset, and then continuing further to create the quotient groups from normal subgroups. Both
ways are equivalent, but one ignores the crucial and powerful idea of equivalence relations.
Definition 2.7.1. Let C be a locally small category. Suppose R is a function which, for every
pair of objects A,B, assigns equivalence relations ∼A,B on the hom set HomC(A,B). Then we
may define the quotient category C/R where
Objects. The same objects of C.
Morphisms. For any objects A,B of C, we set HomC/R(A,B) = HomC(A,B)/ ∼A,B.

Thus we see that morphisms between f : A B in C becomes equivalence classes [f ] in
C/R.

With that said, we can naturally define a canonical functor Q : C C/R where Q acts
identically on objects and where Q(f : A B) = [f ] ∈ HomC/R(A,B). This in fact defines a
functor if we observe that, for a pair of composable morphisms g, f .

Q(g) ◦Q(f) = [g ◦ f ] = Q(g ◦ f).

A nice property of this functor is the fact that if f ∼ f ′, then Q(f) = Q(f ′). What is even
nicer about this functor is that it has the following property.
Proposition 2.7.2. Let C be a locally small category with an equivalence relation ∼A,B on
each set HomC(A,B). Then for any functor F : C D into some category D such that
f ∼ f ′, F (f) = F (f ′), there exists a unique functor H : C/R D such that H ◦ Q = F ; or,
diagrammatically, such that the following diagram commutes.

C C/R

D

Q

F
H

Proof. Observe that one functor H : C/R D that we can supply, which will have the
above diagram commute, is one where H(C) = F (C) on objects and where for any [f ] ∈
HomC/R(A,B),

H([f ]) = F (f)
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where f is an representative of the equivalence class f . Note that this is well defined since
F (f) = F (f ′) if f ∼A,B f ′; hence this will appropriately send equivalent elements to the same
morphism. It is not hard to show that it’s unique; one can just suppose such an H exists and
then demonstrate that it behaves like the functor we proposed initially. �

Example 2.7.3.
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2.8 Monoids, Groups and Groupoids in Categories

One of the most simplest, useful and yet underrated concepts in mathematics is the concept of
a monoid. The reason why monoids are so useful is because they capture three main concepts:
stacking "things" together to create another "thing," in such a way that our stacking operation
is associative, with the additional assumption of an identity element which doesn’t change
the value. Often times in cooking up a mathematical construction, we want to maintain these
three concepts because they are so familiar to our basic human nature.

Now recall the definition of a monoid.
Definition 2.8.1. A monoid M is a set equipped with a binary operation · : M ×M M

and an identity element e such that

1. For any x, y, z ∈M , we have that x · (y · z) = (x · y) · z
2. For any x ∈M , x · e = x = e · x.
It turns out that we can abstract the above definition very easily if we just resist the

temptation to explicitly refer to our elements. In order to do this, we need to find a way to
diagrammatically express the above axioms.

Towards that goal, rename the binary operation as µ : M × M M (for notational
convenience). Then to express axiom (1), we mean that we have 3 elements x, y, z ∈ M and
there are two ways to compute them, but we want them to be the same. So lets make each
different way to compute them one side of a square, which we’ll say it commutes.

(x, y, z) (x · y, z)

(x, y · z) x · (y · z) = (x · y) · z

µ×1

1×µ µ

µ

M ×M ×M M ×M

M ×M M

µ×1

1×µ µ

µ

The result is the diagram on the above left. Since we want this to hold for all elements inM , we
construct the diagram more generally on the above right; this expresses our associativity axiom.
Now to express the second axiom diagrammatically, we need a way to discuss the identity map.
So define the map η : {•} M where η(•) = e. This is just a stupid map that picks out
the identity. Then axiom (2) can be translated diagramatically to state that the bottom left
diagram commutes.

(•,m) (e,m) (m, e) (m, •)

m = e ·m = m · e = m

η×1M

πM
µµ

1M×η

1M×η

{•} ×M M ×M M × {•}

M

η×1M

πM
µ

1M×η

πM

Since we want this to hold for all m ∈M , we generalize this to create a commutative diagram
as on the above right. We now have what we need to define a monoid more generally.
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Definition 2.8.2. Let C be a category with cartesian products. Denote the terminal object as
T . An object M is said to be a monoid in C if there exist maps

µ : M ×M M (Multiplication)
η : T M (Identity)

such that the diagrams below commute.

M ×M ×M M ×M

M ×M M

µ×1

1×µ µ

µ

T ×M M ×M M × T

M

η×1M

π′M

µ

1M×η

πM

Dually, a comonoid is an object C with maps

∆ : C C × C (Comultiplication)
ε : C T (Identity)

such that the dual diagrams commute.

C C × C

C × C C × C × C

∆

∆ ∆×1C

1C⊗∆

T × C C × C C × T

C

ε×1C
1C×ε

σ′
σ∆

Note that we’re being a little sloppy here. For example, the object M ×M ×M doesn’t
actually exist; we have either M × (M ×M) or (M ×M) ×M . However, for any category
with cartesian products, we always have that these two objects are isomorphic. Hence we mean
either of the equivalent products when we discuss M ×M ×M .

Example 2.8.3. Let k be a field. Consider the categoryVectk. Then a monoid in this category
is an object A equipped with maps

Example 2.8.4. Group object in the category of Top is a topological group.

Example 2.8.5. Monoid in the category of R modules is an associative algebra.
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3. Universal Constructions and Limits

3.1 Universal Morphisms

This chapter is probably the most important chapter in these notes. In an ideal world, this
chapter would be the first chapter. However, that would pedagogically go over terribly. The
discussion requires categories, functors, and natural transformations; we need the language
these concepts offer to even begin to rigorously define what a universal construction even is.

But at this point, we are in fact equipped with the fundamentals. So we can now go on and
define what a universal construction is, and demonstrate its prevalence in mathematics and
therefore the usefulness of category theory as a convenient language to discuss these concepts.

To begin, we will motivate with a few examples.
Let ϕ, ψ : (G, ·) (H,+) be a pair of abelian1 group homomorphisms. We now ask the

question:

What is the set of all g ∈ G such that ϕ(g) = ψ(g)? Is it a subgroup of G?

To determine this, it is equivalent to asking when ϕ(g)−ψ(g) = 0 =⇒ (ϕ−ψ)(g) = 0. Hence
every such g ∈ G lies in the kernel of ϕ−ψ : G H, and every element in the kernel is such a
desired element; so we’ve answered the first question. The kernel is a subgroup of G, so we’ve
answered the last question. Now because this is a kernel, it has an inclusion homomorphism
i : Ker(ϕ− ψ) G. So far, our picture looks like this:

Ker(ϕ− ψ) G Hi
ϕ

ψ

and clearly ϕ ◦ i = ψ ◦ i. Now suppose that σ : K G is another group homomorphism with
the property that ϕ ◦ σ = ψ ◦ σ. Then by our previous work, this means that for each k ∈ K,

1The abelian-ness becomes important later.
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we have that σ(k) ∈ Ker(ϕ− ψ). That is,

Im(σ) ⊆ Ker(ϕ− ψ)

Hence instead of mapping K into G, we can instead map K into Ker(ϕ − ψ), and then travel
back to G using i. So, there is a unique morphism τ : K Ker(ϕ−ψ) such that the diagram
below commutes (Prove it is unique; it shouldn’t be too bad).

Ker(ϕ− ψ) G H

K

i
ϕ

ψ

τ σ

What’s really going on? This is an example of a universal construction. We have a “supreme”
morphism i : Ker(ϕ − ψ) G with the property that ϕ ◦ i = ψ ◦ i. Any other morphism
σ : K G with the same property that ϕ ◦ σ = ψ ◦ σ must factor through the “supreme”
morphism i in a unique way. Uniqueness here is very important.

Now, if you haven’t seen this definition before, it’s going to sting a little, and you’ll probably
have to read it 20 times and do many, many examples (not just look at examples, you have to
do some yourself) to achieve true understanding. But here we go:
Definition 3.1.1. Let F : C D be a functor and D an object of D. Define a universal
morphism from D to F to be a morphism

u : D F (C)

with C ∈ Ob(C) and u a morphism in D equipped with the universal property:
For every morphism f : D F (C ′), there exists a unique morphism
h : C C ′ such that the diagram below commutes.

D F (C)

F (C ′)

u

f
F (h)

C

C ′

h

The arrow h is dashed, and should be read as "there exists an h.” This is a practice that we
will continue to use throughout this text.

Remark 3.1.2. To the beginner, this definition will most likely make zero sense. The only
way that it will make sense is to see the definition in action.

A universal arrow can also be thought of as a pair (C, u : D F (C)). This just emphasizes
that C is special. This isn’t really useful for us to imagine in this way right now. So you don’t
have to think of it as a pair, so long as you remember you’re mapping to F (C).
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The point is that any arrow of the form f : D F (C ′) forces the unique existence of an
arrow f ′ : C C ′ such that F (h) ◦ u = f .

Example 3.1.3. Let V , W be finite-dimensional vector spaces over a field k. Denote their
bases as {v1, v2, . . . , vn} and {w1, w2, . . . , wm}.

Q: What does it take for a function T : V W to be a linear transforma-
tion?

Well, suppose we have a linear transformation. Since each element of V may be written as
c1v1 + · · ·+ cnvn for ci ∈ k, we see that

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

Thus we have an answer.
A: To define a linear transformation T : V W , it suffices to specify where
we want T to send the basis elements v1, . . . , vn.

An illustration of this fact is below.

R3

y

z

x

Pn(x)

1 x x2

... 1 + x ...

... 2x2 + 2x+ 1 ...

... x2 + 2x ...

... x2 + 5 ...

We can specify a linear transformation from R3 to the polynomial vector space P3(x) by
specifying where we send the basis elements. Here, we color code where we send the basis.

This observation helps us build our first example of universality.
Let X be a (possibly infinite) set. For a field k, we can generate a vector space Vx (Note

the color-coding here corresponds to the color-coding in the definition of a universal morphism)
whose basis elements are x ∈ X. Specifically,

Vx =
{∑

x∈X
cxx

∣∣∣∣∣ cx = 0 for all but finitely many x
}
.

Now let Vectk be the category of vector spaces over the field k. Let U : Vectk Set be the
forgetful functor which sends the vector space V to the set containing all its elements. For any
set X, then there is an inclusion map

i : X U(Vx) x 7! x.
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This inclusion map has the following property. Let W be any vector space, and suppose that
we have a function f : X U(W ). This is kind of funny. A map f : X U(W ) simply picks
out a wx ∈ W for each x ∈ X. Since X is a basis for Vx, this “picking out” defines a linear
transformation T : V W . That is, such an f : X U(W ) allows us to define a linear
transformation where for each basis element x ∈ X

T (x) = f(x).

Since we know where the basis elements go, we see that such a linear transformation is well
defined. Moreover, we see that our construction makes the diagram below commute.

X U(Vx)

U(W )

i

f
U(T )

Vx

W

h

Therefore, we see that a universal morphism from X to the forgetful functor U : Vectk Set
is its inclusion morphism i : X U(Vx) into the vector space Vx generated by X.

Several key concepts in topology are secretly universal properties in disguise. This is because
in some sense, the problem of universality is an optimization problem. And in elementary
topology, we are often trying to optimize a given topological space with a desired property. For
example, the closure of a topological space X is the “largest closed set” containing X. We’ll
elaborate more on this.

Example 3.1.4. Let X be a topological space. In topology, it is often of interest to consider
a compactification of the space X. Such a story goes like this: Given X, we seek a compact
space X∗ such that X embeds as a dense subspace of X∗. In other words, we want a compact
X∗ which has a dense subspace S ⊆ X∗ that is homeomorphic to X. We can then identify X
with S and work within X∗, which is a nicer space to work inside of.
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In the middle, we have the topological space (0, 1)× (0, 1). As this isn’t compact, we can
compactify it to either (1) a sphere, by adding a point and identifying all four sides with the

point, or adding sufficient points to (2) identify opposite edges to obtain a torus.

We can, however, do even better. We can compactify X into a space that is not only
compact, but is also Hausdorff. The optimal compactification for this situation is the Stone-
Čech Compactification, which is defined as follows. Given a topological space X, the Stone-
Čech compactification is the compact, Hausdorff space βX, equipped with a dense embedding
iX : X βX such that, for any other compact, Hausdorff space K equipped with a continuous
map f : X K, there exists a unique continuous function βf : βX K such that

X βX

K

iX

f
βf

This universal property is what demonstrates that the Stone-Čech compactification βX is the
“most compact, Hausdorff” space we can densely embed X into. However, in the language of
category theory we see that this is just another example of a universal morphism. To see this,
let I : CHaus Top be the inclusion functor from compact Hausdorff spaces into topological
spaces. Then we can rewrite the diagram as

X I(βX)

I(K)

iX

f
I(βf)

Of course, in practice, we’d never actually write it like this; but this is just for us to be able to
see that the dense embedding iX : X βX is universal from X to the the inclusion functor
I : CHaus Top, so that the Stone-Čech compactification is truly an example of a universal
morphism.

Example 3.1.5. Consider the free monoid functor F : Set Mon which sends a set X to
the free monoid generated by X. Specifically,

F (X) = {x1x2 . . . xn | xi ∈ X} ∪ {e}

The set consists of all strings using elements of X, and an identity e; the monoid product is
concatenation.
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Suppose I have a monoid homomorphism ϕ : F (X) M where M is another monoid.
Then for any two x1, x2 ∈ X, we have that ϕ(x1x2) = ϕ(x1)ϕ(x2). More generally, for any
x1 · · · xn ∈ F (X), we have that

ϕ(x1 · · ·xn) = ϕ(x1) · · ·ϕ(xn).

We thus see the following: To define a monoid homomorphism, we just need to know where to
send every individual x ∈ X. This is achieved by defining a set function ϕ0 : X U(M), and
by setting ϕ(x) = ϕ0(x). This makes the diagram below commutative.

X U(F (X))

U(M)

iX

ϕ0
ϕ

x iX(x) = x

ϕ0(x) = ϕ(x)

We thus see that (X, iX : X F (X)) is universal from X to U : Mon Set.

Example 3.1.6. Let (R,+, ·) be a ring and k a field. Suppose further that R is a k-algebra.
Then for any set X = {x1, . . . , xn} of indeterminates, we can create a free algebra generated
by X, denoted as k{X}. One can show that this defines a functor

F : Set Algk

mapping setsX it k{X} and functions f : X Y to the k-algebra morphism ϕ : k{X} k{Y }
where ϕ is defined linearly by its action on the basis elements sending each x f(x). On the
other hand, note that we can also create a forgetful functor

U : Algk Set

which simply reinterprets each k-algebra as a set and each k-algebraic morphism as a function.
Now consider a mapping f : X U(R) in Set. Because we also have a mapping i : X

U(F (X)), which acts an inclusion function, we see that we can create a mapping h : F (X) A

such that the diagram below commutes.

X U(F (X))

U(A)

i

g U(h)

F (X)

A

h

The way we do this is we defined h : F (X) A to act linearly on the basis elements, sending
x 7! g(x). This defines a k-algebraic morphism and makes the above diagram commute. In
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this case, we say that (F (X), i : X U(F (X))) is universal from X to the forgetful functor
U : Algk Set.

When we discuss a universal morphism from D to F : C D, we are particularly discussing
a morphism u : D F (C) and a special object C. Hence, we can actually write a universal
morphism as a pair (C, u : D F (C)). Does this look familiar? This is an object of the
category (D # F )! Hence, universal morphisms can actually be thought of as elements in a
comma category. Under this intepretation, what does the universal property translate to? The
next proposition answers our question.
Proposition 3.1.7. Let F : C D be a functor. A morphism u : D F (C) is universal from
D to F if and only if (C, u : D F (C)) is an initial object of the comma category (D # F )

So, as we will see, the universal property of a universal morphism u : D F (C) translates
to (C, u : D F (C)) being an initial object in some comma category.

Proof. Let F : C D be a functor, and D an object of D. Recall that the category (D # D)
is the category where
Objects. Pairs (C, f : D F (C)) with C ∈ C and f : D D a morphism in D.
Morphisms. Morphisms between two objects (C, f : D F (C)) and (C ′, f : D F (C ′))

are given by morphisms h : C C ′ such that the diagram below commutes.

D

F (C) F (C ′)

f f ′

F (h)

Suppose (A, u : D F (A)) is an initial object in (D # F ). Then for every other pair
(A, f : D F (A′)), there exists a unique morphism h : A A′ such that the diagram on
the bottom left commutes.

D

F (A) F (A′)

u f

F (h)

=
D F (A)

F (A′)

u

f
F (h)

A

A′

h

However, if we rearrange this we see that this is just the universal property in disguise!
Conversely, any pair (A, f : A F (A)) being a universal morphism can be demonstrated to
be an initial object in (D, # F ) by reversing the above proof. �

Now, we didn’t do this just for fun. The interpretation of a universal morphism as an initial
object of a comma category theory will serve to be very useful, just not now. As of now it does
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not really grant us much. But when we are deep into the chapter on Limits, this intrepretation
will become useful.

One thing that the interpretation does grant us for now is the following theorem, which
requires essentially no proof if we understand a universal morphism is an initial object of a
comma category. This theorem explains ultimately why we care about universal morphisms;
they’re like categorical invariants!

Theorem 3.1.8. Let F : C D be a functor and D ∈ D. Suppose u : D F (C) is universal
from D to F for some object C ∈ C. If u′ : D F (C ′) is also universal from D to F , then
C ∼= C ′.

Proof. Universal morphisms u : D F (C) are initial objects in the comma category (D # F ),
and initial objects are always unique up to isomorphism. Hence (C, u : D F (C)) with the
universal property is unique. �

However, the direct proof, where we do not use the interpretation of a comma category, is
left as an exercise. It’s actually very important to see and understand the direct proof.

As with most constructions within category theory, there is a dual construction. That, is
there is another form of universality which is equally as important as the one we originally
introduced. So, in general, there are two forms of universality.
Definition 3.1.9. Let F : C D be a functor and C an object of C. A universal arrow
from F to C is a morphism

v : F (C) D

equipped with the universal property:
For every f : F (C ′) D, there exists a a unique morphism h′ : C ′ C

such that the diagram below commutes.
F (C) D

F (C ′)

v

F (f ′)
f

C

C ′

h

Note that this is basically the previous definition of a universal arrow from an object to a
functor, except the direction of the arrows have been flipped. This is why we called this the
"dual" definition of the previous one. This motivates the following statement which requires no
effort to prove.
Proposition 3.1.10. Let C be a category and F : C D be a functor. If C has a universal
morphism from D to F , then Cop has a universal morphism from F to D.

So we see that the two notions of unviversality we’ve introduced really are dual concepts.
Both are equally important, and we will see that they both arise as very deep concepts in
mathematics. Not just in the examples we’ve provided, but in deeper pure category theory.

Anyways, we can repeat the propositions we worked on.
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Proposition 3.1.11. Let F : C D be a functor. A morphism u : F (C) D is universal
from F to D if (C, u : F (C) D) is a terminal object of the comma category (F # D).

This is left as an exercise, and should be similar to our proof from before. And as before,
we get our second important theorem:

Theorem 3.1.12. Let F : C D be a functor, with u : F (C) D universal from F to D.
Then if u′ : F (C ′) D is also universal from F to D, then C ∼= C ′.

Proof. Universal morphisms from F to D are terminal objects in a comma category, and
terminal objects are always unique up to isomorphism. �

The direct proof is also an exercise.

Exercises

1. Prove Theorem 3.1.8 directly, and dualize your proof to prove Theorem 3.1.12 directly.

2. Prove Proposition 3.1.11.

3. For each ring R, we may construct the single-variable polynomial ring R[x]. This process
defines a functor Poly : Ring Ring.

Show that for each ring R, the inclusion ring homomorphism i : R R[X] is a universal
morphism from R to Poly.

4. Let X and Y be two sets, and consider their product X×Y . Recall that with any product,
we have “projection maps” π1 : X × Y X and π2 : X × Y Y where π1(x, y) = x

and π2(x, y) = y.

i. Suppose we have functions f : Z X and g : Z Y . Show how this gives us a
map h : Z X × Y , and show that this map is unique (to the pair f and g).

ii. Using your map h : Z X × Y , show that the diagram on the left commutes, and
that the diagram on the right is equivalent.

Z

X X × Y Y

f g
h

π1 π2

(X × Y,X × Y ) (X, Y )

(Z,Z)

(π1,π2)

(h,h)
(f,g)

To be clear, the diagram on the right is in the category Set× Set.

iii. Let ∆ : Set Set × Set be the “copy functor” which sends X 7! (X,X). Then
the above diagram translates to
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∆(X × Y ) (X, Y )

∆(Z)

(π1,π2)

∆(h)
(f,g)

Deduce how the product (π1, π2) : ∆(X × Y ) (X, Y ) is universal from (X, Y ) to
∆. This is an important fact that we’ll build upon later.

4. Let X and Y be two sets, and consider the coproduct

X q Y = {(x, 1), (y, 2) | x ∈ X, y ∈ Y }2

Recall that with any coproduct, we’ll have “injection maps” i1 : X X q Y and
i2 : Y X q Y where i1(x) = (x, 1) and i2(y) = (y, 2). Repeat (i-iii) as in the
previous exercise to demonstrate that (i1, i2) : (X, Y ) ∆(X q Y ) is universal from ∆
to (X, Y ).

2Note that I arbitrarily chose the numbers 1 and 2. I could have put anything I wanted. For a coproduct, we
just need to create two separate tuples that contain x values and y-values. Hence 1 and 2 work perfectly fine.
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3.2 Representable Functors and Yoneda’s Lemma

This is probably the most important section out of these entire set of notes. The propositions
proved here will allows us to perform slick proofs of interesting results later on. We will also
use results that are left as exercises for the reader (since it is important for the reader to do
them). Now before we introduce the Yoneda lemma, we prove some propositions concerning
the concept of universality.
Proposition 3.2.1. Let F : C D be a functor. Then a pair (R, u : D F (R)) is universal
from D to F if and only if for each C ∈ C we have the natural bijection

HomC(R,C) ∼= HomD(D,F (C)).

That is, any isomorphism, natural in C as above, is determined by a unique morphism u :
D F (R) so that (R, u) is a universal arrow from D to F .

Proof. Suppose that u : D F (R) is a universal morphism from D to F . Then by definition,
we have the relation

D F (R)

F (C)

u

h
F (f)

R

C

f

Each h : D F (C) uniquely corresponds to a morphism f : R C, while conversely, any
f : R C can be precomposed with u to obtain a morphism F (f) ◦ u : D F (C). Hence
we see the we have a bijective correspondence

HomD(R,C) ∼= HomC(D,F (C)).

Now to demonstrate naturality, we consider a morphism k : C C ′ and we check that the
diagram below commutes.

HomD(R,C) HomC(D,F (C))

HomD(R,C ′) HomC(D,F (C ′))

∼

k◦(−) F (k)◦(−)

∼

D F (R)

F (C)

F (C ′)

u

h

F (k)◦F (f)◦u F (k◦f)

F (f)

F (k)

R

C

C ′

k◦f

f

k

• Beginning with a morphism f : R C,
we travel right to obtain the morphism
F (f) ◦ u. Going down, we obtain the
morphism F (k) ◦ (F (f) ◦ u).

• Consider the same morphism f : R C.
If we instead first traveled down, we’d
obtain the morphism k ◦ f . Traveling
right would then send us to the morphism
F (k ◦ f) ◦ u.
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However, it is certainly the case that

F (k) ◦ (F (f) ◦ u) = F (k ◦ f) ◦ u

so that these paths are equivalent. The proof could also be given immediately by considering
the diagram on the left, which is supplied here to give a better understanding of what’s going
on.

To prove the other direction, suppose that we have such a natural bijection given by some
ϕ.

ϕC : HomD(R,C) −!∼ HomC(D,F (C))

Then in particular we have that HomD(R,R) ∼= HomC(D,F (R)). Consider ϕ(1R) : D
F (R); we denote this special morphism as u : D F (R).

Now for any f : R C, the diagram on the bottom left commutes by naturality; however,
we are more interested in following the element 1R ∈ HomD(R,R).

HomD(R,R) HomC(D,F (R))

HomD(R,C) HomC(D,F (C))

∼

f◦(−) F (f)◦(−)

∼

1R u : D F (R)

f : R C ϕ(f) = F (f) ◦ u

We see that any such ϕ must act on HomD(R,C) by bijectively send f : R C to F (f) ◦ u.
What this means is that any h ∈ HomC(D,F (C)) corresponds uniquely to some f : R C

such that h = F (f) ◦ u, which is exactly the definition for u : D F (R) to be universal
from D to F . This completes the proof. �

In the proof we demonstrated above, we did something weird. That is, we discussed this
so-called natural isomorphism

ϕC : HomD(R,C) HomC(D,F (C)).

However, at this point we’ve only really seen natural isomorphisms between functors. Does this
mean what we really had was a natural transformation between two functors? The answer is
yes; the proof inadvertently derived the natural isomorphism

ϕ : HomD(R,−) HomC(D,F (−))

which, by the proposition above, exists only when we have a universal morphism u : D F (R)
from D to F . For such functors, we call them representable.
Definition 3.2.2. Let C have small hom-sets. We say a functor K : C Set is representable
when there exists an object R and a natural isomorphism

ψ : HomD(R,−) K.
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The object R here is said to be the representing object for K.

Example 3.2.3. Consider the forgetful functor U : Grp Set. One way to describe this
functor is simply with words: each group G is sent to its underlying set in Set. Another
approach is to literally express the groups in terms of its elements, for this then tells us where
it is sent in Set. A simple way to do this is to consider the maps

HomGrp(Z, G) = {Group homomorphisms ϕ : Z G}.

This works since each such map ϕ : Z G firstly picks out some element a so that ϕ(1) = a.
As this is a group homomorphism we then see that ϕ(n) = an. Hence the collection of all these
maps picks out all of the elements of G, so that we can say

U(G) ∼= HomGrp(Z, G).

We use an isomorphism since an equality is not exactly correct; we just know that the two sets
are going to have the same cardinality, and hence be isomorphic in Set. Now, what this in the
end means is that the forgetful functor is a representable, since we have that

U : Grp Set ∼= Hom(Z,−) : Grp Set.

This construction works due to the key property of the group homomorphism, so that this can
be repeated for Ring, R-Mod, etc. Hence many forgetful functors are representable functors.
We will see in Chapter 5 what this really means.

Example 3.2.4. Let (R,+, ·) be a ring and (k,+, ·) a field. Suppose further that R is k-algebra.
Recall that we can create the affine n-space of R

An(R) = {(x1, . . . , xn) | xi ∈ R}.

Now suppose ϕ : R S is a morphism of k-algebras. Then this induces a mapping

An(ϕ) : An(R) An(S) (r1, · · · , rn) 7! (ϕ(r1), . . . , ϕ(rn)).

What we can realize now is that we have a functor on our hands (by of course verifying the
other necessary properties) between Algk and Set.

An : Algk Set.

Now recall from Example 2.3.1 that if F : Set Algk is the free functor assigning X 7! k{X},
the free algebra, and U : Algk Set is the forgetful functor, then for each set X we have
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a universal morphism (F (X), i : X U(F (X))) from X to the forgetful functor U . By
Proposition ??, we thus have the isomorphism

HomAlgk(F (X), R) ∼= HomSet(X,U(R)).

natural for all R ∈ Algk. However, notice that if X = {x1, . . . , xn}, HomSet(X,U(R)) is
nothing more than the set of all functions which pick out n elements of R. In other words,

HomSet(X,U(R)) ∼= An(R).

One can verify the naturality of the above bijection (I won’t it’s not too bad). Therefore we
have that

HomAlgk(F (X), R) ∼= An(R) =⇒ HomAlgk(K{X}, R) ∼= An(R).

so that we have a natural isomorphism between functors

HomAlgk(K{X},−) ∼= An(−).

What this then means is that An(−) is a representable functor.

Example 3.2.5. Let X be a topological space. Recall from Example ?? that we can consider
the set Path(X) consisting of all paths in the topological space X. If we recall that a path in
X can be represented by a continuous function f : [0, 1] X, we see that

Path(X) = {f : [0, 1] X | f is continuous} = HomTop([0, 1], X).

Hence we see that Path : Top Set is a functor; moreover, it is clearly representable since
Path(−) = HomTop([0, 1],−).

This example, however, can be taken even further: What about n-dimensional “paths?” To
generalize this we can use simplicies. Denote ∆n as the n-simplex. Then we can establish the
family of functors

HomTop(∆n,−) : Top Set

which map simplicies to topological spaces; such continuous functions provide the foundation
for singularly homology theory, and each functor above is representable . Note that we get back
Path when n = 1.

As we have just seen, representable functors not only occur very frequently but they also
arise naturally to yield consturctions which we actually care about.

A natural question to ask at this point is the following: When exactly do we have a repre-
sentable functor on our hands? The next proposition answers that question.
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Proposition 3.2.6. Let C be a locally small category, and suppose K : C Set is a functor.
Then K is a representable functor (with representing object R) if and only if (R, u : {•}
K(R)) is universal from {•} to K for some object R ∈ C.

Note here that {•} is the one-point set whose single element is denoted as •.

Proof. The forward direction is similar to Example 3.2, while the backwards direction is
similar to the proof of Proposition ??.

First let’s interpret what it means for u : {•} K(R) to be universal. This means that
for any other f : {•} K(C ′), there exists a unique morphism h : R C ′ such that the
diagram below commutes.

{•} K(R)

K(C ′)

u

f
K(h)

R

C ′

h

By Proposition ?? we also have the natural bijection

HomC(R,C) ∼= HomSet({•}, K(C))

which is enough to establish a natural isomorphism ϕ : HomC(R,−) ∼= HomSet({•}, K(−)).
Now observe that for a given C ′, each f ∈ HomSet({•}, K(−)) is just a function f :

{•} K(R). Thus, each function can be represented uniquely by an element c ∈ K(C),
which establishes the bijection

HomSet({•}, K(C)) ∼= K(C)

for each C. In fact, it’s not difficult to show that this bijection is natural. Therefore we see
that we can connect our natural bijections together

HomC(R,−) ∼= HomSet({•}, K(−)) ∼= K(−)

which demonstrates that K : C Set is a representable functor.
Conversely, suppose that K : C Set is representable. Specifically, suppose ϕ :

HomC(R,−) −!∼ K(−) is our natural isomorphism between the functors. Then in partic-
ular, for any h : R C, naturality guarantees that the following diagram commutes.

HomC(R,R) K(R)

HomC(R,C) K(C)

∼

h◦(−) K(h)◦(−)

∼

1R ϕ(1R)

h : R C ϕ(h) = K(h)
(
ϕ(1R)

)
.

Now take a step back; define the morphism u : {•} K(R) where u(•) = ϕ(1R), and
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suppose f : {•} K(C) is some morphism. Then because ϕ : HomC(R,C) K(C) is a
bijection, this means that f(•) = ϕ(h : R C) for some unique morphism h : R C. In
particular, the above diagram tells us that

K(h)
(
ϕ(1R)

)
= ϕ(h) =⇒ K(h)(u(•)) = f(•).

In other words, we have that given any f : {•} K(C), there exists a unique h : R C

such that the diagram commutes.

{•} K(R)

K(C ′)

u

f
K(h)

Therefore, the fact that K is representable gives rise to a u : {•} K(R) which is universal,
which is what we set out to show. �

We are now ready to introduce the well-known lemma due to Nobuo Yoneda. The Yoneda
lemma is simply a convenient result that occurs when one encounters situations with the func-
tors HomC(R,−) : C Set. While this might not seem that relevant, it applicability expands
when we combine the result with our previous work on representable functors in this section.

Theorem 3.2.7. (Yoneda "Lemma") Let K : C Set be a functor. Then for
every object R of C, we have that

HomSetC
(

HomC(R,−), K
) ∼= K(R) =⇒ Nat(HomC(R,−), K) ∼= K(R)

where Nat(F,G) denotes the set of all natural transformations between functors F,G.

Proof. To demonstrate bijectivity, we construct two maps from each set and demonstrate
that they are inverses.

Suppose we have a natural transformation η : HomC(R,−) K. Then for every C ∈ C,
the diagram below on the left commutes.

R

C

f

HomC(R,R) K(R)

HomC(R,C) K(C)

f◦(−)

ηR

K(f)

ηC

1A ηR(1R) = u

f ηC(f) = K(f)(u)

With this diagram, we can follow what happens to the identity morphism 1R ∈ HomC(R,R).
As above, denote ηR(1R) = u ∈ K(R). The commutativity of the diagram above then tells
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us that
ηC(f : R C) = K(f)(u).

This is great! This tells us the exact formula for every η ∈ Nat(HomC(R,−), K). Moreover,
each formula is uniquely determined by some u ∈ K(R). This then motivates us to construct
the mapping

y : Nat(HomC(R,−), K) K(R) η 7! u

where u is the unique member of K(R) such that ηC(f : R C) = K(f)(u).
Now consider any arbitrary member r ∈ K(R). For each C ∈ C, construct the mapping

εC : HomC(R,C) K(R) εC(f : R C) = K(f)(r)

This defines a natural transformation, so that what we’ve constructed is a mapping

y′ : K(R) Nat(HomC(R,−), K) r 7! εC

where εC(f : R C) = K(f)(u).
Now given any η ∈ Nat(HomC(R,−), K) we clearly have that y′ ◦ y(η) = η and for any

r ∈ K(r) we have that y ◦ y′(r) = r. Hence we have a bijection between sets, so we may
conclude that

Nat(HomC(R,−), K) ∼= K(R)

as desired. �

Example 3.2.8. As the Yoneda lemma is a bit mysterious when one first encounters it, we can
perform a simple sanity check as follows. For any category C, consider the objects A,B ∈ C,
which we can use to build the functors Hom(A,−),Hom(B,−) : C Set. What is a natural
transformation η : Hom(A,−) Hom(B,−)? It is a family of functions, indexed by all objects
in C, such that for each f : C D the diagram below commutes.

C

D

f

Hom(A,C) Hom(B,C)

Hom(A,D) Hom(B,D)

ηC

f◦(−) f◦(−)

ηD

k : A C ηC(k) : B C

f ◦ k : A D ηD(f ◦ k) = f ◦ ηC(k).

We see that these functions must satisfy the property outlined in yellow for all C,D. So
what functions do this? An immediate source of such functions that assemble into natural
transformations which we seek arise when we take any ϕ ∈ Hom(B,A) and set each ηC :
Hom(A,C) Hom(B,C) equal to

(−) ◦ ϕ : Hom(A,C) Hom(B,C)
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for each C ∈ C. This clearly checks out since we have that, for any f : C D and k : A C,

(f ◦ k) ◦ ϕ = f ◦ (k ◦ ϕ).

The question now is: Is every natural transformation derived from some ϕ ∈ Hom(B,A)? We
know that the answer is yes! This is an exercise in Section 1.9. The work of that exercise is
proving this; however, we immediately get the result by the Yoneda Lemma since we can just
observe that

Nat(Hom(A,−),Hom(B,−)) ∼= Hom(B,A).

Therefore, each such natural transformation is created from some ϕ ∈ Hom(B,A), which is
what we’d expect, so the Yoneda lemma passes our sanity check.

We now introduce the following definition to ease our discussion.
Definition 3.2.9. Let C be a category. A functor of the form F : Cop Set is called a
presheaf3. As a presheaf may be viewed as an element of the functor category Fun(Cop,Set),
we can define such a category as the category of presheaves over C.

A natural source of presheaves is one which we are already familiar with. Given any locally
small category C, we can take any object A of C to produce the functor

HomC(−, A) : Cop Set.

This process itself induces a functor known as the Yoneda embedding.
Definition 3.2.10. Let C be a locally small category. The Yoneda embedding on C is the
functor y : C Fun(Cop,Set) where for each object A

y(A) = HomC(−, A) : Cop Set.

The reason why this is called the Yoneda embedding is because of the functor’s relationship
with the Yoneda embedding, which should become clear in proving the following proposition.
Proposition 3.2.11. The Yoneda embedding y : C Fun(Cop,Set) is a full and faithful
functor.

The proof of this proposition is left as an exercise. However, the Yoneda embedding arises
naturally in many calculations within category. It is used to prove the following important
proposition.
Proposition 3.2.12. Every small category C is concrete.

3The name “presheaf” is due to the fact that this concept is a precursor to the concept of a sheaf, which is
outside of our scope for the moment.
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Proof. Recall that a concrete category C is one which has a faithful functor F : C Set. To
demonstrate this for small categories, first define the functor

C : Fun(Cop,Set) Set

where a presheaf P : Cop Set is mapped as

(P : Cop Set) 7!
∐

A∈Ob(C)
P (A).

Note that the indexing of the disjoint union is where we use locally smallness. This functor
is fully faithful (exercise). As it is fully faithful, and the Yoneda embedding y : C
Fun(Cop,Set) is faithful, the composite functor

C ◦ y : C Set

must be faithful. Hence we see that C is concrete. �

Finally, we end this section with a curious connection to group theory. It turns out that
Yoneda’s Lemma can actually be used in the proof of Cayley’s Theorem. Sometimes this
statement is taken too literally by others and they think “Yoneda’s Lemma is a generalization
of Cayley’s Theorem” but that is simply not true, so the reader is warned to not believe someone
when they hear that. Put simply, Yoneda’s Lemma offers a bijection on sets which, with a little
extra separate work, extends to an isomorphism of groups.
Proposition 3.2.13. (Cayley’s Theorem.) Let (G, ·) be a group. Then G is isomorphic to a
subgroup of Perm(G).

Proof. Recall that a group (G, ·) can be regarded as a category C; specifically, we construct
a category with one object • and set HomC(•, •) = U(G), where U : Grp Set is the
forgetful functor. For each g ∈ G, a morphism is represented as fg : • •, and we have that
fg ◦ fg′ = fg′·g.

Now consider the functor HomC(•,−) : C Set. Such a functor produces the following
data:

• We have that HomC(•, •) = U(G)

• We also get a family of bijections ϕg : U(G) U(G) such that ϕg ◦ ϕg′ = ϕg′·g.

In other words, the functor imposes an action of G on its underlying set of elements U(G)
in Set. Specifically, we may write ϕg′(g) = g′ · g for each g ∈ G. Now what’s a natural
transformation η between two functors?

η : HomC(•,−) HomC(•,−).

Since there is only one object of C, a natural transformation is one function η : U(G) U(G)
such that for each g′ ∈ G, the diagram below commutes.
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•

•

fg′

U(G) U(G)

U(G) U(G)

η

ϕg′ ϕg′

η

g η(g)

g′ · g η(g′ · g) = g′ · η(g)

Now, Yoneda’s Lemma gives us the bijection below, which we may denote as ψ,

Nat(HomC(•,−),HomC(•,−)) ∼= HomC(•, •) = U(G).

If we now observe that

• The collection of such natural transformations is a group under composition, with iden-
tity 1U(G) : U(G) U(G), which we may denote as (P, ◦)

• (P, ◦) ⊆ Perm(G)

then we can extend the isomorphism ψ : P U(G) to a group isomorphism

ψ : (P, ◦) −!∼ (G, ·)

which is the statement of Cayley’s Theorem. �

Exercises

The first two exercises are very important. We (in fact you! The reader!) will use these
results later on.

1. Prove the following dual counterpart to Proposition 3.2.1: Let F : C D be a functor.
Then a pair (R, u : F (R) D) is universal from F to D if and only if for each C ∈ C,
we have the natural bijection

HomC(C,R) ∼= HomD(F (C), D).

2. Prove the following dual counterpart to Proposition 3.2.6: Let C be a locally small cate-
gory, and supposeK : C Set is a functor. ThenK is corepresentable, with representing
object R, if and only if (R, u : K(R) {•}) is universal from K to {•} for some object
R.

Hint: Because K is corepresentable, it is a contravariant functor. Thus, this should be
very similar to the proof of Proposition 3.2.6, except with one twist.
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3.3 Finite Products

In this section we will discuss products in categories, which will be our first encounter with the
concept of a limit, something which has yet to be defined. The concept of a limit, and the dual
concept of a colimit, form one of the central concepts of category theory. It will turn out that
both the limit and colimit concepts are a special case of a universal morphism.

Example 3.3.1. Let (G, •) and (H, •) be two groups with group operations • : G × G G

and • : H ×H H. The product group of G,H is the group

(G×H, •) =
{

(g, h)
∣∣∣∣∣ g ∈ G, h ∈ H

}

whose group product works as

(g, h) • (g′, h′) = (g • g′, h • h′).

One may check that this construction satisfies the definition of a group.
If G,H are abelian groups, then the term “group product” is replaced with the term direct

sum (we will explain why later). In this case, the product is denoted (G⊕H, •), and the group
operation does not change from above.

Direct sums, or more generally products of groups, are frequently used in group theory.
For example, they are necessary to describe the fundamental theorem of finite abelian groups,
which states that for any finite abelian group A, there exist primes p1, p2, . . . , pn and positive
integers α1, α2, . . . , αn such that

A ∼= Zpα1
1
⊕ Zpα2

2
⊕ · · · ⊕ Zpαnn .

That is, every finite abelian group is the product of cycic groups of a prime-power order.

Example 3.3.2. Let (X, τX) and (Y, τY ) be two topological spaces. Using X and Y , we can
create a topological space (X × Y, τX×Y ) where τX×Y is the product topology. There are
many ways of defining this topology, but in the finite case, we can write τX×Y as

τX×Y =
{
U × V

∣∣∣∣∣ U ∈ τX , V ∈ τY
}
.

In the way we have presented this, this is actually the box topology, but the reader may recall
that they coincide when we take finite products.
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Example 3.3.3. In Set, we can always take two sets X, Y to create the cartesian product
X × Y defined as the set

X × Y =
{

(x, y)
∣∣∣∣∣ x ∈ X, y ∈ Y

}

Now consider the following question.

Q: What is the bare minimum amount of logical data that perfectly charac-
terizes the above product X × Y ?

Well, observe that for such a set, we have two projection functions

p1 : X × Y X p1(x, y) = x

p2 : X × Y Y p2(x, y) = y.

Further, suppose that f : Z X and g : Z Y are two functions. Then there exists a third
h : Z X × Y such that p1 ◦ h = f and p2 ◦ h = g. By this description, we can deduce that
h(z) = (f(z), g(z)).

Z

X X × Y Y

gf
h

p1 p2

z

f(z) (f(z), g(z)) g(z)

(3.1)

Moreover, this h is unique with respect to f and g; Showing this is the bulk of Exercise 3.1.4.
We now have an answer to our question.

A: The product X×Y is characterized by the following data: two projection
functions p1 : X×Y X, p2 : X×Y Y , such that for any pair of functions
f : Z X, g : Z Y , there exists a unique third h : Z X × Y such
that diagram 3.1 commutes.

With the above example in mind, we now introduce our first definition of a product.
Definition 3.3.4 (Nice Product Definition.). Let C be a category with objects A and B. The
product of A and B is an object A×B equipped with morphisms

πA : A×B A πB : A×B B

with the following universal property: For any object Z of C with morphisms f : Z A,
g : Z B, there exists a unique morphism h : Z A × B such that the diagram below
commutes.
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Z

A A×B B

gf
h

πA πB

Remark 3.3.5. Note that to utilize the above universal property, one requires a pair of
morphisms f : Z A and g : Z B. That is, it is not true that, if I have a single
morphism f : Z A, then there exists a unique h : Z A×B such that πA ◦h = k. That
would be false in many cases.

The above definition is a very nice one. For example, it returns the concepts of products of
groups or topological spaces when it is imposed in Grp and Top. However, keep in mind the
products don’t always exist. For example, it does not work in Fld, the category of Fields (that
is, there is no field which satisfies the universal property). We will eventually explain why.

Example 3.3.6. ConsiderRing, the category of rings. We can create products in this category
as follows: Let (R,+, •) and (S,+, •) be two rings with zeros 0R, 0S and units 1R, 1S. Then we
may form the product ring of R and S to be the ring

(R× S,+, •) =
{

(r, s)
∣∣∣∣∣ r ∈ R, s ∈ S

}

where for all pairs (r1, s1) and (r2, s2) in R× S, we define the ring operations to behave as

• (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

• (r1, s1) • (r2, s2) = (r1 • r2, s1 • s2)

Note that with these requirements, the additive identity is (0R, 0S) while the multiplicative
identity is (1R, 1S). With this construction, one can show that this satisfies the universal
property of a product in Ring, so that Ring has products.

We make an interesting observation from the last example. For our ring (R × S,+, •), we
surely have that (0R, 1S) and (1R, 0R) are elements of the product ring. However,

(0R, 1S) • (1R, 0S) = (0R • 1R, 0S • 1S) = (0R, 0S).

Hence, even if the rings R and S are integral domains, R× S is not an integral domain. Thus
the product of two rings is never an integral domain.

Example 3.3.7. Consider the category of fields Fld. Let F1, F2 be fields. Then we would
expect that the ring

F1 × F2 =
{

(a, b)
∣∣∣∣∣ a ∈ F1, F2

}
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to be the “product field.” But we just observed that this cannot be a field because the product
ring is not even an integral domain.

However, this does not exclude the possibility that there is some kind of other field con-
struction which we are not considering that plays the role as a product in Fld. We show that
such a construction cannot hold for all fields with the following simple example.

Consider the fields F2 and F3, the fields with 2 and 3 elements, respectively. Suppose that
P is the product field of F2 and F3. Then by definition, we would require two projection field
homomorphisms

π1 : P F2 π2 : P F3

However, recall that two fields share a (nonzero) field homomorphism if and only if they are of
the same characteristic. Therefore,

• π1 can only exist if P has characteristic 2. In fact, P must be isomorphic to F2.

• π2 can only exist if it has characteristic 3. In fact, P must be isomorphic F3.

Clearly, we have a contradiction. Thus we simply cannot generally take products in Fld in a
logical way.

From the previous example, we see that products don’t always exist in category. However,
if they do, then we can take finitely many products. For instance, if we have three objects
A,B,C, then we can take the products

A× (B × C) (A×B)× C.

If we have four objects, then we can create 5 products. Thus, if we can take the product of two
objects, then we all finite products consisting of objects of C exist in our category.

We encapsulate this idea and include other prerequisites for a category to have finite prod-
ucts in the following proposition.
Proposition 3.3.8. Suppose C is a category with a terminal object T and a product object
A×B for every pair of objects A and B. Then
(i) C has finite products.
(ii) There exists a bifunctor ∏ : C × C C where (A,B) 7! A×B.
(iii) For any three objects, we have an isomorphism

(A×B)× C ∼= A× (B × C)

which is natural in A,B and C .
iv For any object A, we have the isomorphism

T × A ∼= A ∼= T × A

natural in A.
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Proof. To prove the first part, let P (n) be the following statement:

P (n) =




For any objects A1, A2, . . . , An ∈ C,
their product diagram in C.

Base Case. Observe that for n = 0, the statement is automatically true since we are given
that a terminal object T exists.

Inductive Step. Suppose the statement holds for n = k. Then for any objects
A1, A2, · · · , Ak, we have the product diagram

D

A1 × · · · × An

A1 A2 · · · Ak−1 Ak

uf1
f2 fk−1

fk

π1

π2 πk−1

πk

and a unique, induced arrow u whenever such a D ∈ C with morphisms fi : D Ai
exists.
Let Ak+1 be an arbitrary object of C. Then the product (A1 × A2 × · · · × Ak) × Ak+1

exists, since by assumption, the product of any two objects in our category must exist,
and gives rise to the product diagram:

D

A1 × · · · × Ak A1 × · · · × Ak × Ak+1 Ak+1

v
g1 g2

π′1 π′2

whenever such an object D with a family of morphisms g1 : D A1 × Ak and g2 :
D Ak+1 exist.
Look at the bottom of the second diagram; we have a unique morphism π′1 : A1× · · · ×
Ak × Ak+1 A1 × · · · × Ak. We can extend this across the morphisms π1, π2 · · · , πk
to demonstrate that there exist unique morphisms

πi ◦ π′1 : A1 × · · · × Ak × Ak+1 Ai

for i = 1, 2, . . . , k. Denote these as πi.
Now suppose we there exists an object C in C with a family of morphisms hi : C Ai.
Then by the first diagram, there exists a unique morphism u : C A1× · · ·×Ak such
that hi = πi ◦ u. Thus we have the diagram:
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C

A1 × · · · × Ak A1 × · · · × Ak × Ak+1 Ak+1

v
u hk+1

π′1 π′2

so we have a unique morphism v : C A1 × · · · × Ak+1 such that π′1 ◦ v = u and
π′2 ◦ v = hk+1. However, note that

π′1 ◦ v = u =⇒ (πi ◦ π′1) ◦ v = πi ◦ u =⇒ πi ◦ v = hi.

for i = 1, 2, . . . , k.
Now let πk+1 = π′2. Then we see that for such a family hi : C Ai for i = 1, 2, . . . , k+1,
there exists a unique morphism v : C A1 × · · · × Ak+1 such that

πi ◦ v = hi

for i = 1, 2, . . . , k + 1. Therefore, we have the product diagram
C

A1 × · · · × Ak+1

A1 A2 · · · Ak Ak+1

vh1
h2 hk

hk+1

π1

π2 πk

πk+1

so that the product A1×Ak ×Ak+1 exists and is well-defined in C. Hence, P (n) is true
for n = k + 1.

By mathematical induction, we see that all finite products must exist in C, as desired.
To demonstrate the existence of a bifunctor, we can directly define one. Let ∏ : C×C C

act as follows.
Objects. ∏(A,B) = A×B.
Morphisms. Let f : A A′ and g : B B′. Suppose we have canonical projections

π1 : A×B A π2 : A×B B

and
π′1 : A′ ×B′ A′ π′2 : A′ ×B′ B′.

Then observe we get the diagram
A×B

A′ A′ ×B′ B′

u
f◦π1 g◦π2

π′1 π′2
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Thus, there exists a unique morphism u : A × B A′ × B′ whenever such f, g exist.
Therefore, we can define how ∏ acts on morphism as

∏
(f : A A′, g : B B′) = u : A×B A′ ×B′

where u is generated by the diagram above. As we just showed, this assignment is well-
defined. It’s now pretty straightforward to now show that this establishes a functor
(and I’m too lazy to do so).
To establish associativity of our products, we demonstrate they’re isomorphic. Thus let
A × (B × C) and (A × B) × C be two products in C. Suppose we have an family of
morphisms h1 : D A, h2 : D B and h3 : D C. Then we get the following
product diagrams.

D

B B × C C

v
h2 h3

p1 p2

D

A A×B B

w
h1 h2

p′1 p′2

D

A×B × C

A B C

u
h1

h2
h3

π1 π2
π3

Since we have unique morphisms v : D B × C and w : D A × B, we also get
the product diagrams.

D

A A× (B × C) B × C

yh1 v

π1 π2

D

A×B (A×B)× C C

z
w h3

π′1 π′2

for the products A×(B×C) and (A×B)×C, respectively. Thus we have the collection
of morphisms

p′1 ◦ π′1 : (A×B)× C A π1 : A× (B × C) A

p′2 ◦ π′1 : (A×B)× C B p1 ◦ π2 : A× (B × C) B

π′2 : (A×B)× C C p2 ◦ π2 : A× (B × C) C.

Now observe that

p′1 ◦ π′1 ◦ z = p′1 ◦ w = h1 π1 ◦ y = h1 (3.2)
p′2 ◦ π′1 ◦ x = p′2 ◦ w = h2 p1 ◦ π2 ◦ y = p1 ◦ v = h2 (3.3)
π′2 ◦ z = h3 p2 ◦ π2 ◦ y = p2 ◦ v = h3. (3.4)
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Thus we see that our first collection of morphisms are projections. That is, for any
family of morphisms h1 : D A, h2 : D B and h3 : D C, there exists unique
morphisms such that equations y, z such that equations (3), (4) and (5) hold. What
this means is that A × (B × C) and (A × B) × C are universal objects; specifically,
they form universal cones. However, the original universal cone of this construction was
simply A×B × C with the morphisms π1, π2, π3. Thus we have that

A× (B × C) ∼= (A×B)× C ∼= A×B × C

since universal objects of the same construction are isomorphic. Showing naturality is
not hard (again, too lazy to do that).
Finally, let T be the terminal object of C. Denote tC : C T as the unique morphism
from C to T . Now consider the product diagram associated with the product T × A:

D

T T × A A

u
tD f

tA π

Observe that tD always exists for any D. Hence the existence of u is completely depen-
dent f . Therefore, we can see that this diagram is equivalent to

D

T A A

u
tD f

tA 1A

Hence we see that A with the morphism tA, 1A forms a universal cone. But so does
T × A; hence, uniqueness guarantees they are isomorphic.

�

Now that we have discussed examples of products in categories, offered a rigorous definition,
and we observed an example when they do not exist, we would naturally want to generalize
this concept since it is often the case that we would like to take arbitrary products, or even
infinite products. We also want to somehow connect products to a universal morphism. To do
all of these things requires us to further abstract our definition of a product. Before doing so,
we offer a simple definition.
Definition 3.3.9. Let C be a category. Define the diagonal functor of C as ∆ : C C × C
where
On Objects. For C an object of C, we define ∆(C) = (C,C).
On Morphisms. For a morphism f : A B, we define ∆(f) = (f, f) : (A,A) (B,B).

The above functor is a bit silly; it really doesn’t do much. However, it necessary for us to
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really understand what exactly a product is. It helps us realize that a product in a category is
actually a universal morphism.
Definition 3.3.10 (Rigorous Product Definition.). Let C be a category with objects A,B. The
product A×B of A and B is a universal morphism

π : (A×B, u : ∆(A×B) (A,B))

from ∆ to (A,B). This means that for any other pair (C, q : ∆(C) (A,B)), there exists a
unique h : C A×B in C such that the diagram below commutes.

∆(A×B) (A,B)

∆(C)

π

∆(h)
q

This definition is exactly equivalent to our previous. What this tells us is that a product is
an instance of a universal morphism. We show how this definition is equivalent to the previous
via the following example.

Example 3.3.11. To see this for the case when n = 2, consider the product A × B of two
objects A,B in some category C. Then

(A,B) ∆(A×B)

∆(C)

u

∆(f ′)
h

=

(A,B) (A×B,A×B)

(C,C)

(πA,πB)

(f ′,f ′)
h

A×B

C

f ′

Let’s spell out what’s going on above; you might have seen this exposition, without even
realizing, demonstrating the universality of products. Suppose there exists another object C
with morphisms f : C A and g : C B. Then we force the existence of a morphism
f ′ : C A×B.

A A×B B

C

πA πB

f
f ′

g

When we usually do this, we simply just set

f ′ = (f, g)

so that πA ◦ f ′ = f , and πB ◦ f ′ = g.
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3.4 Finite Coproducts

We now move onto the concept of coproducts in categories. We will see that this concept is an
instance of a colimit, which is yet to be defined. We build intuition on the concept with the
special concept of coproducts by introducing examples.

Example 3.4.1. Let (G, •) and (H, •) be two groups with group operations • : G × G G

and • : H ×H H. The free product of G and H is the group

(G *H, •) =
{
g1h1g2h2 · · · gkhk

∣∣∣∣∣ gi ∈ G, hi ∈ H
}

with the following operation. If g1h1 · · · gkhk and g′1h′1 · · · g′`h′` are two elements of G *H, then

(g1h1 · · · gkhk) • (g′1h′1 · · · g′`h′`) = g1h1 · · · gkhkg′1h′1 · · · g′`h′`.

We require the group operation to obey the following two rules. Let g1h1 · · · gkhk ∈ G *H.

• If g ∈ G, then
g • (g1h1 · · · gkhk) = (g • g1)h1 · · · gkhk.

• If h ∈ H, then
(g1h1 · · · gkhk) • h = g1h1 · · · gk(hk • h).

The free product of two groups arise frequently in algebraic topology. Despite that its definition
is somewhat complicated, we will see later that free products are in some sense dual to the
concept of the product of groups. The reader will also soon see that the naming “free product”
is an unfortunate one as it is somewhat misleading.

Free products appear prominently in various statements of Van Kampen’s theorem in topol-
ogy; what follows is a simplified version. If X = U ∪ V is a topological space with U, V open
sets, and if U ∩ V 6= ∅ is path connected and simply connected, then

π1(X) ∼= π1(U) *π1(V )

where π1(X) is the fundamental group of X. (Note that since X is path connected, it doesn’t
matter what basepoint for the fundamental group we select).

We will soon see that the free product is the coproduct in the category of Grp, although
such a statement should not make any sense the reader until we define what a coproduct is.

Example 3.4.2. In Set, we can combine two different sets X and Y to create the disjoint
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union X q Y , which is defined to be the set

X q Y =
{

(x, 0), (y, 1)
∣∣∣∣∣ x ∈ X, y ∈ Y

}
.

In the above set, elements are tuples whos first coordinate is either in X or Y , and the second
is some value which depends on whether or not the first coordinate is in X or Y . I decided to
make these values 0 and 1, but it is ultimately arbitrary. We just need to make sure that these
values are distinct so that we can determine if a tuple has an element from X or Y based on
the value in the second slot. For example, for a tuple (z, 0), we know that z ∈ X. If the tuple
is of the form (z, 1), we know that z ∈ Y .

We perform a similar analysis as before with products, and we consider the following ques-
tion.

Q: What is the bare minimum amount of logical data that perfectly charac-
terizes the above disjoint union X q Y ?

Observe that we have the two inclusion functions

i1 : X X q Y i1(x) = (x, 0)
i2 : Y X q Y i2(y) = (y, 1).

These two functions are equipped with the following remarkable property. Let Z be some set,
and suppose I have two functions

f : X X q Y
g : Y X q Y.

Then there exists a unique function h : X q Y Z such that the diagram below commutes.

Z

X X q Y Y

gf
h

i1 i2

h(z, i) =



f(z) if i = 0
g(z) if i = 1

(3.5)

This definition of this unique h : X q Y Z is described above on the right. With the above
definition, one can easily see that the above diagram does in fact commute. We now have an
answer to our question.

A: The disjoint union X q Y is characterized by two inclusion functions
i1 : X X q Y , i2 : Y X q Y , such that, for any f : X Z,
g : Y Z, there exists a unique h : X q Y Z such that diagram 3.5
commutes.

This now motivates the following definition of a coproduct.
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Definition 3.4.3 (Nice Coproduct Definition.). Let C be a category with objects A and B.
The coproduct of A and B is an object AqB of C which is equipped with morphisms

iA : A AqB iB : B AqB

with the following universal property: For any object Z of C with a pair of morphisms f : A Z

and g : B Z, then there exists a unique morphism h : A q B Z such that the diagram
below commutes.

Z

A AqB B

gf
h

iA iB

It is now clear that, coproducts in Set exist; it is the disjoint union.

Remark 3.4.4. Note that to utilize the above universal property, one requires a pair of
morphisms f : A Z and g : B Z. That is, it is not true that, if I have a single
morphism k : A Z, then there exists a unique h : AqB Z such that h ◦ iX = k. That
would be false in many cases.

Proposition 3.4.5. Suppose C is a category with an initial object I and a coproduct object
AqB for every pair of objects A and B. Then
(i) C has finite coproducts.
(ii) There exists a bifunctor q : C × C C where (A,B) 7! AqB.
(iii) For any three objects, we have an isomorphism

(AqB)q C ∼= Aq (B q C) ∼= AqB q C

which is natural in A,B and C .
iv For any object A, we have the isomorphism

I q A ∼= A ∼= I q A

natural in A, where T is the initial object of the category.

Definition 3.4.6 (Rigorous Coproduct Definition). Let C be a category with objects A,B. The
coproduct AqB of A and B is a universal morphism

(AqB, i : (A,B) ∆(AqB))

from (A,B) to ∆. This means that, for any other pair (C, j : (A,B) ∆(C)), there exists a
unique h : AqB C such that the diagram below commutes.
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(A,B) ∆(AqB)

∆(C)

i

j
∆(h)

AqB

C

h

Visually, we have that

(A,B) (C,C)

(D,D)

u

f
(h,h)

C

D

h
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3.5 Arbitrary Products and Coproducts in Categories

In this section, we perform a construction that allows us to have finite products and coproducts
in a category. Once we achieve that construction, we easily generalize our work to obtain a
definition for arbitrary products and coproducts in a category.

Definition 3.5.1. Let Dn be the discrete category with n-many objects (we use the letter D
for “discrete”). We will often visualize Dn as below.

•1 •2 •3 · · · •n

Note that a functor F : Dn C is one which simply picks out n different objects A1,
A2, . . . , An of C:

F (•1) = A1, F (•2) = A2, . . . , F (•n) = An.

This category allows us to make the following definition.

Definition 3.5.2. Let C be a category. The n-th diagonal functor ∆n : C Cn, is the
functor defined as follows.

On Objects. For an object C, we have that ∆n(C) = (
n-many copies︷ ︸︸ ︷
C,C, . . . , C).

On Morphisms. For a morphism f : A B in C, we have that

∆n(f : A B) = (f, f, . . . , f) : ∆n(A) ∆n(B).

The diagonal functor is also sometimes informally called the “copy” functor, since it is
literally just copying data. We now make some observations.

(1) For each object C ∈ C, we can interpret the object ∆n(C) ∈ Cn as a functor

∆n(C) : Dn C

where ∆n(C) sends •i to C for all i = 1, 2, . . . , n.

(2) Thus, we may also regard the n-th diagonal functor as a functor as below.

∆n : C Fun(Dn, C) C 7! (∆n(C) : Dn C).

In this interpretation, every morphism f : C C ′ is interpreted as a natural transfor-
mation ∆n(f) : ∆n(C) ∆n(C ′).

(3) Consider a functor F : Dn C such that F (•i) = Ai ∈ C. For each C ∈ C, a natural
transformation

η : ∆n(C) F
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will simply correspond to n-many morphisms η1, . . . , ηn where

ηi : ∆n(C)(•i) F (•i) =⇒ ηi : C Ai.

With this notation clarified, we now can propose our definition of a product.
Definition 3.5.3 (Finite Product and Coproduct Definition). Let C be a category. Let A1,
A2, . . . , An be objects of C. Let F : Dn C be the functor such that F (•i) = Ai.

• The product of A1, A2, . . . , An is an object P of C equipped with a (natural transforma-
tion) p : ∆n (P ) F such that

(P, p : ∆n (P ) F ) is universal from ∆n to P .

In the case where the product P exists, we write P = ∏n
i=1Ai.

• The coproduct of A1, A2, . . . , An is an object C of C equipped with a (natural transfor-
mation) i : F ∆n(C) such that

(C, i : F ∆n(C)) is universal from C to ∆n.

In the case where the coproduct C exists, we write C = ∐n
i=1Ai

Remark 3.5.4. By Observation (3) as above, if p : ∆n

(
n∏

i=1
Ai

)
F is a natural trans-

formation, then it corresponds to n-many morphisms

pk :
n∏

i=1
Ai Ak k = 1, 2, . . . , n

This matches our intuition: A product of n-objects should always have n-many morphisms
between the product and each of its factors.

Similarly, a natural transformation i : F ∆n (∐n
i=1 Ai) corresponds to n-many mor-

phisms
ik : Ak

n∐

i=1
Ai k = 1, 2, . . . , n

which again matches our intuition: A coproduct of n-objects should have n-many morphisms
between each of its factors and the coproduct.

We now have everything we need to define arbitrary products and coproducts, including
infinite ones. We just need to specify some notation that we will use. Towards that goal, let λ
be some indexing set.

• Define Dλ to be the discrete category consisting of one object •i for each i ∈ λ. (In
particular, Dλ is now possibly infinite.)
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• Define the λ-diagonal functor to be the functor ∆λ : C Fun(Dλ, C) where ∆λ(C) :
Dλ C sends each •i to C for all i ∈ λ.

Definition 3.5.5 (Arbitrary Product and Coproduct Definition). Let C be a category, and
consider an arbitrary set of objects {Ai}i∈λ of C, λ some indexing set. Let F : Dλ C be the
functor such that F (•i) = Ai for i ∈ λ.

• The product of {Ai}i∈λ is the object P of C equipped with a (natural transformation)
p : ∆λ (P ) F such that

(P,∆λ (P ) F ) is universal from ∆λ to P .

In the case where the product P exists, we write P = ∏
i∈λAi.

• The coproduct of {Ai}i∈λ is the object C of C equipped with a (natural transformation)
i : F ∆λ(C) such that

(C, i : F ∆λ(C)) is universal from C to ∆λ.

Remark 3.5.6. Notice the inherent duality present in the definition of a product and co-
product. This is one of the reasons category theory is nice; one now has a new perspective of
understanding, for example, the free product operation and the group product operation in
Grp; they’re dual concepts!

Since products and coproducts of objects are universal objects, we obtain some nice results
since we already know how universal objects operate. Before introduce such results, we require
the following lemma.
Lemma 3.5.7. Let C be a locally small category, and let {Ai}i∈λ be objects of C. Suppose
their product exists in C. Then the functor

∏

i∈λ
HomC(−, Ai) : C Set

which sends an object C to the set ∏i∈λ HomC(C,Ai) is representable by the functor

HomFun(Dλ,C)(∆λ(−), F ) : C Set.

The proof is left as an exercise. It is not difficult to show; it simply requires realizing that
there is a natural bijection between ∏

i∈λ HomC(C,Ai) and HomFun(Dλ,C)(∆λ(C), F ) for each
C ∈ C.

Using all of our previous work we now have the following proposition.
Proposition 3.5.8. Let C be a locally small category, and let {Ai}i∈λ be a set of objects in C.
Denote F : Dλ C where F (•i) = Ai for all i ∈ λ.
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• If the product ∏i∈λAi exists in C, then for each object C of C, we have the natural
bijection

∏

i∈λ
HomC(C,Ai) ∼= HomC


C,

∏

i∈λ
Ai




• If the coproduct ∐i∈λAi exists in C, then for each object C of C, we have the natural
bijection

∏

i∈λ
Hom(Ai, C) ∼= HomC


∐

i∈λ
Ai, C


 .

Proof. We only prove the first result, since the second follows similarly. Since ∏i∈λAi
exists in C, we know that this implies ∏i∈λAi is equipped with a natural transformation
p : ∆λ (∏i∈λAi) F such that (∏i∈λAi, p) is universal from ∆λ to P .

From this perspective, we can apply the result of Exercise 3.2.1 to conclude that, for each
object C, we have the natural bijection below.

HomC


C,

∏

i∈λ
Ai


 ∼= HomFun(Dλ,C)(∆λ(C), F ).

However, we know from Lemma 3.5.7 that there is a natural bijection

HomFun(Dλ,C)(∆λ(C), F ) ∼=
∏

i∈λ
HomC(C,Ai).

Thus we have a natural bijection

∏

i∈λ
HomC(C,Ai) ∼= HomC


C,

∏

i∈λ
Ai




as desired.
The second result is left as an exercise (we outline the steps for the reader).

�

Remark 3.5.9. Note that the above proposition is saying something very deep and beautiful
about products and coproducts as a concept. Moreover, also note that a direct proof would
have been very long-winded and complicated, but that our previous work made it possible to
give a proof consisting of a few lines. Thus, a categorical perspective is evidently sometimes
useful.

We now introduce the following interesting property. This property becomes an important
observation when we begin look at abelian categories.

Proposition 3.5.10. Let C be a category and let {Ai}i∈λ be a set of objects in C. Suppose the
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product ∏i∈λAi and coproduct ∐i∈λAi exist in C. Then there is a canonical morphism

ϕ :
∏

i∈λ
Ai

∐

i∈λ
Ai

in C.

Proof. Let F : Dλ C be the functor where F (•i) = Ai. Then the product and coproduct
are equipped with the natural transformations as below.

∆λ


∏

i∈λ
Ai


 F F ∆λ


∐

i∈λ
Ai




Then we can compose them to obtain the natural transformation

∆λ


∏

i∈λ
Ai


 ∆λ


∐

i∈λ
Ai


 .

By the universal property of the coproduct, this implies a unique ϕ : ∏i∈λAi
∐
i∈λAi such

that the diagram below commutes.
�

Remark 3.5.11. Here is one of our first uses of the word “canonical.” This is not an
adjective that adds detail to our morphism (e.g., an extra mathematical property), but it is
a word we superfluously wrote to emphasize to the reader that morphisms of a given form
cannot always be found in categories.

The word “canonical” is often used in category theory language, but it is never really
defined because its always secretly assumed that everyone knows what it means. It’s a useful
word, so we will use it later on, but again: it means nothing more than “There exists an
obvious morphism of a given form.”

Exercises

1. Prove Lemma 3.5.7. (Note: the notation and statement may make it look harder than it
actually is.)

2. Complete the proof of Proposition 3.5.8 as follows.

i. Show that the functor ∏

i∈λ
HomC(Ai,−) : C Set

is representable by the functor

HomFun(Dλ,C)(F,∆λ(−)) : C Set
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ii. Using (i), Proposition 3.2.1, and interpreting coproducts as universal objects, prove
that

∏

i∈λ
Hom(Ai, C) ∼= HomC


∐

i∈λ
Ai, C


 .

3. Let P be a preorder with binary relation ≤. Consider a subset A ⊆ P where
A = {ai ∈ P | i ∈ λ} with λ some indexing set.

(i.) Regarding P as a thin category, prove that the product p =
∏

i∈λ
ai, when it exists,

is the supremum of A.
Hint: Recall that, if X is a preorder, the supremum of a set S ⊆ X is the
element s ∈ X such that if ai ≤ s′ for all i ∈ λ, then s ≤ s′.

(ii.) We know that the dual of the product is the coproduct. Can you guess what
the coproduct

∐

i∈λ
ai in P is in this case? Prove it.

4. Let C and D be categories. Consider the functor category Fun(C,D). What is a
product in this category? What conditions do we need to place on C and D for this
product to exist?
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3.6 Introduction to Limits and Colimits

In our previous work, we learned a lot about universal morphisms and then studied the basics
of how products and coproducts behave in categories. Such studying provides a great deal of
preparation for the concepts of limits and colimits, which we will introduce in this section.
Before we do so, it will be convenient to utilize the notion of a cone.
Definition 3.6.1. Let C be a category, A an object of C. Let F : J C be a functor, J an
arbitrary category. A cone with A over F is a family of morphisms

ϕi : A F (i) i ∈ J

such that, for each morphism f : i j in J , the diagram below commutes.

A

F (i) F (j)

ϕjϕi

F (f)

We denote the set of cones over F with apex A as Cone(A,F ).
Dually, a cone with F over A is a family of morphisms

ϕi : F (i) A i ∈ J

such that, for each morphism f : i j in J , the diagram below commutes.

F (i) F (j)

A

F (f)

ϕi ϕj

Similarly, we define the set of cones with F over A as Cone(F,A).

We will see that the above concept is similar to the work we have done so far. To demonstrate
this, we generalize our concept of a diagonal functor.
Definition 3.6.2. Let C and J be categories. The diagonal functor on J is the functor
∆ : C Fun(J, C) which sends an object C to the functor ∆(C) : J C, defined as follows:
Each i ∈ J is mapped to C, and every morphism in J is mapped to the identity of C.

Note how if we set J = Dn, the discrete category on n-object, or J = Dλ, the discrete
category with objects indexed by λ, we obtain our original definitions of the diagonal functor.
Proposition 3.6.3. Let C and J be categories. Suppose F : J C is a functor, and let A be
an object of C.
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• A cone with A over F corresponds to a natural transformation ϕ : ∆(A) F , and vice
versa. In other words,

Cone(A,F ) ∼= Nat(∆(A), F ).

• A cone with F over A corresponds to a natural transformation ϕ : F ∆(A), and vice
versa. In other words,

Cone(F,A) ∼= Nat(F,∆(A)).

The proof is left to the reader. The proposition is the key to mentally switching back and
forth from thinking about cones and natural transformations (between suitable functors) as
equivalent constructions.

We now define limits and colimits.
Definition 3.6.4 (Limits). Let F : J C be a functor. The limit of F is an object LimF

equipped with a natural transformation u : ∆(LimF ) F such that

(LimF, u : ∆(LimF ) F ) is universal from ∆ to LimF .

• This means that, for any other pair (C, v : ∆(C) F ) with v a natural transformation
and with C ∈ C, there exists a unique morphism h : C LimF in C such that the
diagram below commutes.

∆(LimF ) F

∆(C)

v

∆(h) v

LimF

C

h

• By Proposition 3.6.3, the morphism u : ∆(LimF ) F forms a cone with LimF over F
via a family of morphisms ui : LimF F (i) for all i ∈ J .
Similarly, any other pair (C, v : ∆(C) F ) is also a cone with C over F via a family of
morphisms vi : C F (i) with i ∈ J .
Thus, the universal property, states that there exists a unique h : C LimF such that
the diagram below commutes.

C

LimF

F (i) F (j)

h

vi vj

ui uj

F (f :i j)
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Remark 3.6.5. We remind the reader that limits do not always exist for certain functors.
This is because universal objects do not always exist. We will eventually discuss conditions
for existence of limits.

Next, we offer the definition of a limit.
Definition 3.6.6 (Colimits). Let F : J C be a functor. The colimit of F is an object
ColimF equipped with a natural transformation u : F ∆(ColimF ) such that

(ColimF, u : F ∆(ColimF )) is universal from F to ∆.

Now is a good time to use Proposition 3.6.3 and reinterpret the definition of a colimit as a
family of morphisms like we did in the definition of a limit.

Remark 3.6.7. We comment on the notation of a limit.

• Many people denote the limit of a functor as Lim F .

• Many people denote the colimit of a functor as Lim F .

The notation makes only sense if one understand the connection between limits and colimits
and universal morphisms. (Compare the direction of the arrow h in the universal diagrams).

However, this then sometimes leads people to start writing Colim F and
Colim F . The issue with this notation is that it seems unnecessarily complicated (per-
haps I am wrong, but I have waited for a long time to come upon an instance for when it
could be useful). Despite these observations, this notation is very consistently used in texts
which use categorical tools, and so this warrants a comment to the reader.

Moving forward, I will simply write LimF and ColimF , since I see no need to make the
notation anymore complicated than it needs to be.

Example 3.6.8. Let J = Dn, the discrete category with n-objects. Let F : J C be the
functor where F (•i) = Ai. We then have that

• The product ∏n
i=1Ai is the limit of F .

• The coproduct ∐n
i=1Ai is the colimit of F .

When we set J = Dλ, with λ an arbitrary indexing set, we similarly get that the arbitrary
product and coproduct definitions are simply instances of limits and colimits.

Thus, universal diagrams and limits have been right in our faces for the last three sections.

Since limits and colimits are universal objects, we have the following proposition. This is a
genearlization of Proposition 3.5.8.
Proposition 3.6.9. Let F : J C be a functor.

• If LimF exists, then for each object C of C, we have the natural bijection

HomC(C,LimF ) ∼= Cone(C,F )
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• If ColimF exists, then for each object C of C, we have the natural bijection

HomC(ColimF,C) ∼= Cone(F,C)

Proof. We prove the first result. Since LimF exists, let (LimF, u : ∆(LimF ) F ) be
universal from ∆ to F . Then by Exercise 3.2.1, we have the natural bijection

HomC(C,LimF ) ∼= HomFun(J,C)(∆(C), F ) = Nat(∆(C), F ).

By Proposition 3.6.3, we can rewrite this natural bijection as

HomC(C,LimF ) ∼= Cone(C,F ).

This proves the first result; the second follows similarly. �

The above proposition is very useful as it gives us the following proposition, which is our
first test of whether or not a limit or colimit exists in a category.
Proposition 3.6.10. Let F : J C be a functor. Then we may define the functors

Cone(−, F ) : C Set
Cone(F,−) : C Set

We have the following two results.

• Cone(−, F ) is representable if and only if LimF exists in C (in which case, this is the
representing object)

• Cone(F,−) is representable if and only if ColimF exist in C (in which case, this is the
representing object)

Proof. For pedagogical reasons, we prove the second bullet point and leave the first as an
exercise.

One direction is immediate: If ColimF exists, then by Proposition 3.6.9, we obtain a
natural bijection for each C in C which implies that Cone(F,−) is representable.

Conversely, suppose Cone(F,−) is a representable functor with representing object R. We
want to show R = LimF . Now by Proposition 3.2.6, Cone(F,−) is representable if and only
if (R, u : {•} Cone(F,R)) is universal from {•} to Cone(F,−).

Let us shut off our brains and blindly expand what this means. This means that for any
other pair (C, v : {•} Cone(F,C)), there exists a unique h : R C such that diagram
below commutes.

{•} Cone(F,R)

Cone(F,C)

u

v Cone(F,h)

R

C

h
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Now let us turn our brains back on and understand what this means. A function u :
{•} Cone(F,R) simply picks out some cone σ ∈ Cone(F,R) whose family we denote as
σi : F (i) R.

Similarly, v : {•} Cone(F,C) picks out a cone v({•}), which we may denote as τ .
What the universal property then says is the following: Given any cone τ with F over some
object C, there exists a unique h such that the diagram below commutes.

C

R

F (i) F (j)

h

τi τj

σi σj

F (f :i j)

This then means that R = ColimF , which proves this direction. �

Remark 3.6.11. The above theorem is actually quite remarkable. We have linked the
existence of our limit to the representability of a particular functor (one which we understand
fairly well). This tells us the concept of a cone is very intimately linked to that of a limit and
colimit.

Exercises

1. Let F,G : J C be two functors, and suppose F ∼= G (i.e., there is a natural isomorphism
between them). Show that

(i.) If LimF exists, then LimG exists and LimF ∼= LimG.

(ii.) If ColimF exists, then ColimG exists and ColimF ∼= ColimG.

Thus, limits and colimits are invariant up to isomorphism.

2. Prove Proposition 3.6.3.

3. Expand Definition 3.6.6, the definition of a colimit, in a similar fashion to how we ex-
panded Definition 3.6.4, the definition of a limit.

4. Use Proposition 3.6.3 and Proposition 3.2.1 to show that if ColimF exists for a functor
F : J C, then we have a natural bijection

HomC(ColimF,C) ∼= Cone(F,C).

This then completes the proof of Proposition 3.6.9.
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5. Use Proposition 3.6.9 (the proof of which you just completed) to prove the first bullet
point of Proposition 3.2.6: The functor Cone(−, F ) : C Set is representable if and
only if LimF exists. Use the following steps.

(i.) Let C be a category, F : J C a functor. Recall that we may define the functor

F : J Cop

which acts the same as F on objects, but if f : i j is a morphism in J , then
F (f) = F (f)op.

Show that LimF exists in C if and only if ColimF exists in Cop.

ii. Show that
Cone(−, F ) ∼= Cone(F ,−).

Then use (i) and the second bullet point of Proposition 3.2.6 to complete the proof.
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3.7 Equalizers and Coequalizers

We introduce equalizers and coequalizers as further examples of limits, and therefore examples of
universal morphisms. Equalizers and coequalizers are important constructions that are useful
for proofs and definitions that we will encounter later on. We first introduce examples of
equalizers and coequalizers.

Example 3.7.1. Let G and H be groups, and consider a pair of homomorphisms ϕ and ψ as
below.

G H
ϕ

ψ

Now consider the homomorphism ϕ− ψ : G H. Then observe that

Ker(ϕ− ψ) =
{
g ∈ G

∣∣∣∣∣ (ϕ− ψ)(g) = 0
}

and note that this is also the set of all g ∈ G in which ϕ and ψ agree. In fact, it is the smallest
such set, a notion we can make precise by the following observation: If G′ is another group with
ϑ : G′ G another map such that ϕ◦ϑ = ψ◦ϑ, then there exists a unique i : G′ Ker(ϕ−ψ)
such that the diagram below commutes.

Ker(ϕ− ψ) G H

G′

i
ϕ

ψ

ϑ
i′

Note above that i : Ker(ϕ−ψ) G is the inclusion morphism. Also note that this construction
is possible for any two parallel group homomorphisms.

Example 3.7.2. In Set, equalizers always exist. Simply let D = {x ∈ A | f(x) = g(x)}, and
let e : D A by the inclusion morphism into A. Clearly we’ll have that f ◦ e = g ◦ e.

Now for any h : C A such that f ◦h = g ◦h, we see that the image of h must be a subset
of D. Hence there exists a unique inclusion morphism i : C D, which shows that e in fact
is the equalizer in Set for any f, g : A B.

Definition 3.7.3 (Nice Equalizer Definition). Let C be a category and consider a pair of parallel
morphisms f, g : A B. The equalizer of f and g is a pair (E, e : E A) such that f ◦e = g◦e
with the following property. For any other morphism h : C A such that f ◦ h = g ◦ h, there
exists a unique morphism f ′ : C E such that the following commutes.
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E A B

C

e
f

g

f ′
h

Definition 3.7.4 (Equalizer as a Limit). Let C be a category and consider a pair of parallel
morphisms f, g : A B. Let J be the category with two elements and two nontrivial morphisms
as below.

J

• •

1• 1•

and let F : J C be the functor such that F (• •) = A B
f

g
We define the

equalizer of f and g to be limit (LimF, e : ∆(LimF ) F ) of F .

Proposition 3.7.5. Let C be a category, and suppose e : D A is an equalizer for a pair of
morphisms f, g : A B. Then e is monic.

Proof. Consider any pair f1, f2 : C D such that e ◦ f1 = e ◦ f2. Then we have that

C D A B
f1

f2

e
f

g

Since e ◦ f1 = e ◦ f2, we see that

f ◦ e = g ◦ e =⇒ f ◦ (e ◦ f1) = g ◦ (e ◦ f1)
=⇒ f ◦ (e ◦ f1) = g ◦ (e ◦ f2).

Hence we see e ◦ f1 = e ◦ f2 : C D is another morphism which is equalized by f and g.

D A B

C

e
f

g

f ′
e◦f1=e◦f2

By the universality of the equalizer e : D A, we know that there must exist a unique
morphism f ′ : C D such that

e ◦ f ′ = e ◦ f1 = e ◦ f2.

Since f ′ is unique, we are forced to conclude that f1 = f2. Hence e ◦ f1 = e ◦ f2 =⇒ f1 = f2,
so that e : D A is monic. �
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Definition 3.7.6. Let C be a category with a zero object Z of C. That is, an object which
is both initial and terminal, such that for any objects A,B of C there exists a unique pair of
morphisms f, g such that

A Z B.
f g

Denote f ◦ g = 0 as the zero arrow (any morphism which passes through z is a zero arrow).
Now we define the cokernel a morphism f : A B to be an arrow u : B C where

1. u ◦ f = 0 : A C

2. If h : B D has the property that h ◦ f = 0, then h = h′ ◦ u for a unique arrow
h′ : B D.

Visually, this becomes

A B E

C.

f u

h
h′

The cokernel is a special object in Ab, as it plays a role in the concept of exact sequences
and hence homology as well. The cokernel of a homomorphism f : G H is the projection
H H/ Im(G), a quotient group of B. This is often written as

coker(f) = H/ Im(G).

Coequalizers.

Definition 3.7.7. Let C be a category and consider two morphisms f, g : A B in C. The
coequalizer of (f, g) is a morphism u : B D such that

1. u ◦ f = u ◦ h
2. If h : B C has the property that h ◦ f = h ◦ g, then there exists a unique morphism
h′ : D C such that h = h′ ◦ u.

This may not always exist. We can represent this with the following commutative diagram.
Note that we can interpret a coequalizers as a morphism which uniquely "flattens" morphisms,
and for any other morphism which also "flattens" is related to the original coequalizer.

A B D

C

f

g

u

h
h′
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With coequalizers, we get the following nice result.

Lemma 3.7.8. All coequalizers are epimorphisms.

Coequalizers can also be realized as universal arrows. First consider the category 2, con-
taining two objects and two nontrivial morphisms. Since there are only two objects, the two
nontrivial morphisms have the same domain and codomain. Now consider the functor category
C2 where

1. Objects are functors F : 2 C, whose image is therefore a pair of morphism f, g : A B

in C
2. Morphisms are natural transformations, which are therefore a pair of arrows h : A A′

and k : B B′ so that

A B

A′ B′

h

f

g

k

f ′

g′

is a commutative diagram. Finally consider the diagonal functor ∆ : C C2 where

C 7−! (1C , 1C)
r : C C ′ 7−! (r, r).

Now consider a pair f, g : A B in C2. If we have a morphism h : B C such that
h ◦ f = h ◦ g, then this is the same thing as a morphism (hf, hg) : (f, g) (1C , 1C) in C2.
Therefore a coequalizer u : B C is a universal arrow from (f, g) to ∆.

Example 3.7.9. In the category Ab, the coequalizer of two group homomorphisms ϕ, ψ :
G H is the homomorphism

π : H H/ Im(ϕ− ψ).

where g′ ∈ H maps to the coset g′ + Im(ϕ− ψ). We show this as follows.
π ◦ϕ = π ◦ψ. First let g ∈ G, and consider the elements

π ◦ ϕ(g) = ϕ(g) + Im(ϕ− ψ)
π ◦ ψ(g) = ψ(g) + Im(ϕ− ψ).
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If we subtract these two quantities, we get that

π ◦ ϕ(g)− π ◦ ψ(g) =
[
ϕ(g) + Im(ϕ− ψ)

]
−
[
ψ(g) + Im(ϕ− ψ)

]

= (ϕ(g)− ψ(g)) + Im(ϕ− ψ)
= 0 + Im(ϕ− ψ).

Since their difference is zero, we see that they’re equal. Hence π ◦ ϕ = π ◦ ψ.
Universality. Let f : H H ′ be another group homomorphism such that f ◦ ϕ = f ◦ ψ.

Then construct the morphism f ′ : H/ Im(ϕ− ψ) H ′ where

h+ Im(ϕ− ψ) 7−! f(h).

Clearly this is well defined, since if h+ Im(ϕ−ψ) = h′+ Im(ϕ−ψ), then this means that
h = h′ + (ϕ− ψ)(g), so that

f ′(h+ Im(ϕ− ψ)) = f(h)
= f(h′ + ϕ(g)− ψ(g))
= f(h′) + f ◦ ϕ(g)− f ◦ ψ(g)
= f(h′)

where in the last step we used the fact that f ◦ ϕ = f ◦ ψ. Thus we see that f ′ is a well-
defined group homomorphism. Furthermore, note that f = f ′ ◦π. To finally show that f ′
is unique, we suppose there exists another group homomorphism k : H/ Im(ϕ−ψ) H ′

such that f = k ◦ π. Then we see that f ′ ◦ π = k ◦ π, which implies that f ′ = k.
What we’ve shown is that for any f : H H ′ such that f ◦ ϕ = f ◦ ψ, there exists a unique
morphism f ′ : H/ Im(ϕ−ψ) H ′ such that f = f ′ ◦ π. Thus we see that π has the universal
property of being a coequalizer.
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3.8 Pullbacks and Pushouts

Pullbacks.
Definition 3.8.1. Let f : A C and g : B C be two morphisms. Then we say a pullback
of f, g is a commutative square on the left

D A

B C

h

k f

g

E A

B C

h′

k; f

g

E

D A

B C

h

k

f ′

h′

k′ f

g

such that for any commutative square in the the middle, the diagram on the right commutes,
and f ′ is unique.

Another way we can describe this is using the language of limits, and hence show that
pullbacks are simply limit objects. Let J be the category of three objects with the following
shape:

1 2 3

The numbers 1, 2, and 3 here mean nothing; they are simply place holders for some distinct
objects. So any functor F : J C simply corresponds to a triple of object and a pair of
morphisms in C:

A C B.
f g

if we have F (1) = A, F (2) = C and F (3) = B. Now we can equivalently describe a pullback
as follows:
Definition 3.8.2. If J is the category with the shape 1 2 3 , and F : J C is
a functor, then a pullback is a universal arrow (D, u : ∆(D) F ) from ∆ to F .

First, observe that this shows that a pullback is a limit. But how are our two definitions
equivalent?

Consider the morphism u : ∆(D) F . This is simply a natural transformation between the
two functors ∆(D) : J C and F : J C. Now ∆(D)(i) = D for all objects i = 1, 2, 3 ∈ J .
On the other hand, F (1) = A, F (2) = C and F (3) = B. Thus we see that ∆(R) F induces
a family of morphisms:

u1 : ∆(D)(1) F (1) =⇒ u1 : D A

u2 : ∆(D)(2) F (2) =⇒ u2 : D C

u3 : ∆(D)(3) F (3) =⇒ u3 : D B
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which arrange themselves in C into the following diagram:

D

A C B

u1 u2
u3

f g

and if we "tip" this diagram over, and force the arrows f and g meeting at C into a 90 degree
angle, we get the following cone:

D A

B C

u1

u3
u2

f

g

=

D A

B C

u1

u3 f

g

Note that we removed the morphism u2 because it’s redundant, unnecessary information; after
all u2 = f ◦ u1 = g ◦ u3; which is information already captured in both the original diagram
and the commutative square.

Thus, we see that whenever we have an object E and morphism v : ∆(E) F , we have a
commutative square! In other words, whenever we have a cone over F , we have a commutative
square! And in even other words, whenever we have a family of morphisms vi : E F (i) for
i = 1, 2, 3, we have a commutative square!

E A

B C

v1

v3
v2

f

g

=

E A

B C

v1

v3 f

g

So, how do we connect the universality of (D, u : ∆(D) F ) with the universality of
the pullback? Well, since this object is universal, we know that for any other pair (E, v :
∆(E) F ), there exists a morphism f ′ : E D such that the following diagram commutes.

F ∆(D)

∆(E)

u

∆(f ′)v

D

E

f ′

The commutativity of the top left diagram gives us the relation that u ◦ ∆(f ′) = v, which
implies that u1 ◦ f ′ = v1 and u3 ◦ f ′ = v3. We then have that
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E A

B C

v1

v3 f

g

=

E A

B C

u1◦f ′

u3◦f ′ f

g

=

E

D A

B C

v1

v2

f ′

u1

u3 f

g

.

which is just the pullback. Thus the pullback is in fact a limit object, and we understand just
exactly how it is a limit object of the functor F : J C.
Definition 3.8.3. Let C be a category, and consider a pair of morphism f : A B, g : A C

in C. A pushout of (f, g) is the commutative diagram on the left

A B

C R

f

g u

v

A B

C S

f

g h

k

such that for every commutative square as on the right, there exists a unique morphism t :
R S such that t ◦ u = h and t ◦ v = k. We can actually summarize this information more
compactly

A B

C R

S

f

g u

h

v

k

t

where the diagram is commutative. One way to imagine a pushout is a commutative diagram
which swallows every other commutative diagram which contains the morphisms f, g.

As you might suspect, the pushout can in fact be related as the universal arrow of a functor.
Consider the category 3, which contains 3 objects and two nontrivial morphisms.

Y X Z
f g

Now construct the functor category C3, where

1. Objects are functors F : 3 C, which is equivalent to pairs of morphisms (f, g) where
f : A B and g : A C in C
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2. Morphisms are natural transformations, which in this case simply reduce to a triple of
morphisms (h, l, k) where

B A C

B′ A′ C ′

h

f

l

g

k

f ′ g′

Now construct the functor ∆ : C C3 where C 7−! (1C , 1C) where 1C : C C is the identity
morphism. Suppose there exists a natural transformation ηS : (f, g) ∆(S), which we can
represent as follows:

B A C

S S S

h

f

l

g

k

1S 1S

If we have a pushout associated with the object R in C, the existence of these commutative
squares implies the existence of a morphism t : R S, so that we have

(f, g) ∆(R)

∆(S)

ηR

ηS
∆(t)

R

S

t

Hence we see that a pushout is a universal arrow from (f, g) to ∆.



HomD(F (C),D) HomC(C,G(D))

HomD(F (C),D′) HomC(C,G(D′))

φC,D

k∗ G(k)∗

φC,D′

HomD(F (C),D) HomC(C,G(D))

HomD(F (C ′),D) HomC(C ′,G(D))

φC,D

(F (h))∗ h∗

φC,D′

CHaus Top
I

β

X I(β(X))

I(C)

f ′

u

β(f)

G(F (C)) C

G(F (C ′)) C ′

ψC

G(F (C)) f

ψ′C

A AY × Y

X × Y

evalA

g (h,idY )

HomC(X×Y ,Z) ∼= HomC(X,ZY )

4. Adjunctions.

4.1 Introduction to Adjunctions.

As promised, we now build upon the work we did with universal morphisms to define the
concept of an adjunction. Adjunctions are special cases of universal morphisms that occur
between two functors F and G which assemble between two categories C and D as below.

C DF

G

Studying adjunctions allows us to give an answer to many questions that appear in categories.
For example, adjunctions can explain why, for instance, given two sets X, Y , we have the
isomorphism

F (X × Y ) ∼= F (X) ∗ F (Y )

where F : Set Grp is the free group functor and ∗ denotes the free product. They can also
explain why this property, and other similar properties, hold for similar free functors.

We begin with an example of an adjunction.

Example 4.1.1. Recall that for a fixed unital ring R in Ring, we may form the functor

R[−] : Grp R−Alg

which sends a group G to its group ring R[G]. Recall that

R[G] =



∑

g∈G
agg

∣∣∣∣∣∣
g ∈ G, ag ∈ R, and ag = 0 for all but finitely many ag



 .
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Recall also that we can form the functor

(−)× : R-Alg Grp

which sends an R-algebra A to its group of units A×. These two functors are related in the
following way. Consider a group G and its group ring R[G]. In general, the units of R[G] are
nontrivial. One thing we do know is that elements of the form 1Rg, with g ∈ G, are units of
R[G]. (The multiplicative inverse of such an element is 1Rg−1.) This allows us to construct a
group homomorphism

i : G (R[G])× g 7! 1Rg.

What is interesting about this is the following fact: (G, i : G (R[G])×) is universal from G

to (−)×. That is, if K is a ring, and we have a mapping ϕ : G K×, then there exists a
unique ring homomorphism h : R[G] K such that the diagram below commutes.

G (R[G])×

(K)×

i

ϕ (h)×

R[G]

K

h

The reason why this works is as follows: ϕ tells us to where to send elements of G. Since a
map on R[G] can be defined by (1) defining where elements of G go and (2) extending linearly,
ϕ induces the existence of h.

By Proposition 3.2.1, we then have the following result: If K is an R-algebra, then for each
group G there is a natural bijection

HomRing(R[G], K) ∼= HomGrp(G, (K)×)

Specifically, the bijection is natural in G.
But wait—There’s more! For every ring K, there is a natural ring homomorphism

ε : R[(K)×] K
∑

k∈K×
akk 7! z(ak)k

where z(ak) = 1k, the identity of K, if ak 6= 0, and z(ak) = 0 if ak = 0. The reason why we
care about this is because (K,R[(K)×] K) is universal from R[−] to (K)×. That is, if G
is a group and we have a mapping ψ : R[G] K, then there exists a unique j : G (K)×
such that the following diagram commutes.

R[(K)×] K

R[G]

ε

ψ
R[j]

(K)×

G

j
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We obtain j as follows: Note that ϕ(1Rg) ∈ K×, since ring homomorphisms send units to units.
Hence, the composite

G (R[G])× K×i ϕ×

where i is defined earlier, yields j. Moreover, the diagram commutes in this way. By Exercise
3.2, if K is a ring, then for every group G we have the following natural bijection

HomGrp(G, (K)×) ∼= HomRing(R[G], K).

Specifically, the bijection is natural in K. However, we just saw this isomorphism before! This
demonstrates our first example of an adjunction.

Definition 4.1.2. Let C,D be categories. Consider a pair of functors

C DF

G

We say that F,G form an adjunction and that F is left adjoint to G (and so G is right
adjoint to F ) if, for all C ∈ C, D ∈ D, there is a natural bijection

HomD
(
F (C), D

)
∼= HomC

(
C,G(D)

)

This definition is somewhat strange, so we comment a few remarks.

Remark 4.1.3.

• To define an adjunction between two functors, it suffices to specify which functor is the
left adjoint, or which functor is the right adjoint (since one specification determines the
other). Thus, the sentence “F and G form an adjunction” alone does not make sense;
namely, it is missing information of which functor is the left or the right adjoint.

• In an adjunction, we are always going to have some kind of bijection as above. But
there are two different ways we could decide to write it:

HomD(F (C), D) ∼= HomC(C,G(D)) or HomC(C,G(D)) ∼= HomD(F (C), D)

This can potentially confuse us on which functor is the left adjoint, and which one is the
right. However, one thing that does not change in the above expressions is the position
of F (C) and G(D) in their hom-sets. In their hom-sets, the symbol F (C) is always in
the left position, while G(D) is in the right. Hence we can determine if F or G is left or
right based on glancing at the bijection. Conversely, knowing the left and rightedness
of our functors tells us how to write down the bijection.
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We now observe that this definition is equivalent to the existence of universal morphisms;
this is something we already saw in our introductory example.

Proposition 4.1.4. Let C,D be categories and consider a pair of functors C DF

G
. The

following are equivalent.

(i.) The functors F , G form an adjunction where F is left adjoint to G (and so G is right
adjoint to G).

(ii.) There exist natural transformations

η : IC G ◦ F ε : F ◦G ID

such that

– For each C ∈ C, the morphism ηC : C G(F (C)) is universal from C to G

– For each D ∈ D, the morphism εD : F (G(D)) D is universal from F to D

Proof. Since F is left adjoint to G, we have the natural bijection

HomD(F (C), D) ∼= HomC(C,G(D)).

This is natural in C and D.
By Proposition 3.2.1, the above bijection is natural in D if and only if there exists a

morphism ηC : C G(F (C)) which is universal from C to G. However, the bijection holds
for all C. Therefore, we obtain a family of universal morphisms

ηC : C G(F (C)).

Since this bijection is also natural in C, we ultimately obtain a natural transformation η :
IC G ◦ F .

Using the same bijection from our adjunction, we can use Exercise 3.2 to conclude the
existence of a family of morphisms εD : F (G(D)) D which is universal from F to D.
We then use the fact that the bijection is natural to form the natural transformation ε :
F ◦G ID, as desired.

As we used if and only if propositions, our work proves both directions, which completes
the proof. �

Definition 4.1.5. Let C DF

G
be an adjunction. We establish the following terminology.

• The natural transformation η : IC G ◦ F is the unit of the adjunction.

• The natural transformation ε : F ◦G ID is the counit of the adjunction.

Example 4.1.6. We already saw this proposition in action in the introductory example. In
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that example, we found a pair functors

Grp Ring
R[−]

(−)×

that formed an adjunction with universal morphisms

iG : G (R[G])× εK : R[(K)×] K

for all groups G and rings K. Hence iG is the unit of the adjunction, while εK is the counit.
These units and counits are what allowed us to establish the bijection

HomRing(R[G], K) ∼= HomGrp(G, (K)×)

natural in G and K. Hence, the group ring functor R[−] is left adjoint to the group of units
functor (−)×.

Using our previous work, we very quickly and (hopefully) painlessly established a connection
between the natural bijection that appears in the definition of an adjunction and the unit and
counit morphisms. However, we did not really describe what the bijection actually does on
elements. The next proposition characterizes the bijection.

Proposition 4.1.7. Let C, D be categories, and suppose C DF

G
form an adjunction with

F left adjoint to G. Let η, ε be the unit and counit.
For each C,D, the natural bijection

ϕC,D : HomD(F (C), D) −!∼ HomC(C,G(D))

is given by the function where for each f : F (C) D and g : C G(D),

ϕ(f) = G(f) ◦ ηC ϕ−1(g) = εD ◦ F (g).

The proof is left to the reader.

Example 4.1.8. We have already encountered the pair of functors

Set MonF

U

where F is the free monoid functor and U is the forgetful monoid functor. We previously saw
that given a set X, there exists an inclusion morphism

iX : X U(F (X))
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and this morphism is universal from X to U . In addition, we know that the monoid homomor-
phism

εM : F (U(M)) M

and this morphism is from F to M . Therefore, we see that F and U are adjoint functors;
specifically, F is left adjoint to G and G is right adjoint to F , and we have the natural bijection

HomMon(F (X),M) ∼= HomSet(X,U(M)).

Moreover, we know exactly how this bijection works.

• For f : F (X) M , we send ϕ(f) to U(f) ◦ iX .
• For g : X U(M), we send ϕ−1(g) to εM ◦ F (g).

This data assembles into the commutative diagrams as below.

X U(F (X))

U(M)

iX

ϕ(f) U(f)

F (U(M)) M

F (X)

εM

F (g)
ϕ−1(g)

Now we offer some sufficient conditions for establishing an adjunction.
Proposition 4.1.9. Let G : D C be a functor. Suppose that for each C ∈ C, there exists
an object F0(C) ∈ D and a universal morphism ηC : C G(F0(C)) from C to G. Then there
exists a functor F : C D which is left-adjoint to G.

Proof. To have universality from C to G, the diagram

C G(F (C))

G(D)

ηC

g G(f)

F (C)

D

f

must commute. Hence we have a bijection

HomD(F (C), D) ∼= HomC(C,G(D)).

Now suppose h : C C ′. Then the dashed arrow

C G(F0(C))

C ′ G(F0(C ′))

ηC

f G(h)

ηC′
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must exist by universality; we simply utilize the previous diagram. In other words, if h :
C C ′, then there exists a morphism f : F0(C) F0(C ′). With that said, we can then
define a functor where F : C D with F (C) = F0(C) and F (h) = F0(C) F0(C ′). By
construction, this functor is left adjoint to G. �

A similar proposition holds for the establishing a right adjoint.
Proposition 4.1.10. Let F : C D be a functor. Suppose for each object D ∈ D there exists
an object G0(D) ∈ C and a universal morphism εd : F (G0(D)) D from F to D.

Then there exists a functor G : D C which is right-adjoint to F .

We now introduce a proposition which offers sufficient conditions for an adjunction, although
it is not parallel to either of our previous propositions.
Proposition 4.1.11. Let F : C D and G : D C be functors, and suppose we have the
pair of natural transformations:

ηC : IC G ◦ F εD : ID F ◦G

such that the following composites are the identity:

G G ◦ F ◦G G
ηG G(ε)

F F ◦G ◦ F F
F (η) εF

Then there exists a bijective ϕ such that (F,G, ϕ) form an adjunction between C and D.

Example 4.1.12. Let U : R-Mod Ab be the forgetful functor, which forgets the R-module
structure on the underlying abelian group M . Consider the functor F : Ab R-Mod, where
F (A) = R⊗ A. We’ll show that this is left-adjoint to U as follows.

To show this, we’ll propose a morphism which we will show to be universal. If A is an
abelian group, then we let ηA : A U(F (A)) where ηA(a) = 1⊗ a.

Thus let M be an R-module, and suppose there exists a morphism f : A U(M). Then
we can define a morphism ϕ : F (A) M where

ϕ(r ⊗ a) = r · f(a).

Our construction ensures that this is a well-defined R-module homomorphism. Hence we clearly
have the equality U(ϕ) ◦ ηA = f . Visually, this becomes

A U(F (A))

U(M)

ηA

f
U(ϕ)

F (A)

M

ϕ

Since the construction of ϕ depends directly on the existence of f , we see that it is unique.
Hence we see that ηA : A U(F (A)) is universal from A to U . Then by Theorem 4.1, we see
that we have an adjunction, so that F is truly left adjoint to the forgetful functor U .
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The following proposition is one of the main reasons why adjoint functors are extremely
useful.
Proposition 4.1.13. Let F, F ′ : C D be two left adjoints of the functor G : D C. Then
F, F ′ are naturally isomorphic.

Proof. Let (F,G, ϕ) and (F ′, G, ϕ′) be two adjunctions between C and D. Then these adjoints
give rise to the universal morphisms

ηC : C G(F (C)) η′C : C G(F ′(C))

for every C ∈ C. Since these are both universal morphisms from C to G, we know that they
are isomorphic. Hence there exists a unique isomorphism θC : F (C) F ′(C) by universality
such that G(θC) ◦ ηC = η′C (think of a universal diagram).

Now let h : C C ′ be a morphism in C. Then F ′(h) ◦ θC = θC′ ◦ F (h) so that the
diagram

F (C) F ′(C)

F (C ′) F ′(C ′)

θC

F (h) F ′(h)

θC′

commutes. Hence we see that θ : F F ′ is a natural isomorphic transformation between F
and F ′, so that these two functors are naturally isomorphic. �

The other direction holds as well. That is, two right adjoints to one left adjoint are naturally
isomorphic as well, and the proof is the same. We now have our last proposition for this section.
Proposition 4.1.14. Let G : D C be a functor. Then G has a left-adjoint F : C D if
and only if for each C ∈ C, the functor HomC(C,G(−)) is representable as a functor of D ∈ D.
Furthermore, if ϕ : HomD(F0(C), D) ∼= HomC(C,G(D)) is a representation of this functor, then
F0 is the object function of F .

Finally, we end this section by realizing that we can actually form composition of adjoints.
Proposition 4.1.15. Let C,D and E be categories. Suppose we have two adjunctions as below.

C D EF

G

F ′

G′

Then the functors F ′ ◦ F , G ◦ G′ form an adjunction between C and E . Further, if (η, ε) and
(η′, ε′) are unit and counits of the adjunction from (F,G) and (F ′, G′), then the unit and counit
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of the new adjunction is

ηC = G(η′F (C)) ◦ ηC : C (G ◦G) ◦ (F ′ ◦ F (C))
εE = ε′E ◦ F ′(εG′(E)) : (F ′ ◦ F ) ◦ (G ◦G′(E)) E

Proof. First, observe that the two given adjunctions give rise to

HomD(F (C), D) ∼= HomC(C,G(D)) HomE(F ′(D), E) ∼= HomD(D,G′(E)).

which are relations that are natural in objects C,D and E. Observe that in the second
relation, we can set D = F (C). This then translates to

HomE(F ′(F (C)), E) ∼= HomD(F (C), G′(E)).

Using the first relation, we know that HomD(F (C), G(E)) ∼= HomC(C,G(G′(E))). Putting
this together, we then have the bijection of homsets

HomE(F ′ ◦ F (C)), E) ∼= HomC(C,G ◦G′(E))

which is natural in C and E. Now, describing the unit and counit is a bit ugly, and not
exactly necessary, since in the end we know what these adjunctions look like. The punchline
here is that we can write our new unit and counit in terms of the original ones.

Observe that for any object C of C, we have the universal morphism

ηC : C G(F (C)).

Since F (C) ∈ D, we can use η′ that

η′F (C) : F (C) G′(F ′(F (C))).

Finally, note that G(η′F (C)) : G(F (C)) G(G′(F ′(F (C)))). However, we can precompose
this with ηC to have that

G(η′F (C)) ◦ ηC : C G(G′(F ′(F (C)))).

On the other hand, for any object E of E that

ε′E : F ′(G′(E)) E.

We also have εD : F (G(D)) D for any object D ∈ D. Hence, we can set D = G′(E) for
some object E of E to get

εG′(E) : F (G(G′(E))) G′(E).
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We can then get that F ′(εG′(E)) : F ′(F (G(G′(E)))) F ′(G′(E)). Composing this with the
original ε′D, we get that

ε′E ◦ F ′(εG′(E)) : F ′(F (G(G′(E)))) E

as desired. Now showing that these remain universal is not hard. �

Exercises

1. Give a proof of Proposition 4.1.7.

2. Let U : Ab Grp be the forgetful functor, and suppose F : Grp Ab is the
abelianization functor. That is, if G is a group and ϕ : G G′ is a group homomorphism
then

F (G) = G/[G,G] F (ϕ) : G/[G,G] G′/[G′, G′].

where [G,G] is the commutator subgroup.

Show that we have an adjunction Grp Ab.F

U
Give a description of the unit and

counits.
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4.2 Reflective Subcategories.

Definition 4.2.1. Let A be a full subcategory of C. We say A is reflective in C whenever the
inclusion functor I : A C has a left adjoint F : C A. We then say the functor F is the
reflector, and the adjunction (F, I, ϕ) is a reflection of B.

In the case of a reflection, we obtain the bijection of hom-sets

HomA(F (C), A) ∼= HomC(C, I(A)) =⇒ HomA(F (C), A) ∼= HomC(C,A)

which is natural in both C and A.

Example 4.2.2. Let F : Grp Ab be the abelianization functor, which sends a group G
to its free abelian group G/[G,G]. From Exercise ??, we know that this is left adjoint to the
forgetful functor U : Ab Grp.

However, the functor U : Ab Grp is isomorphic to the inclusion functor I : Ab Grp.
Hence, F is also left adjoint to the inclusion functor, so that Ab is a reflective subcategory of
Grp.

Example 4.2.3. Let Top be the category of topological spaces with morphisms continuous
functions. Let CHaus, the category of compact Hausdorff spaces, which is a subcategory of
Top.

If we let X be a topological space, then we denote β(X) to be the Stone-Cech compactifica-
tion. Let I : CHaus Top be the inclusion functor. Then the definition of the Stone-Cech
compactification of a space X is the universal property:

X I(β(X))

I(C)

f ′

u

β(f)

β(X)

C

f

That is, the Stone-Cech compactification is a topological space β(X) with a morphism u :
X β(X) which is universal across all morphisms f : X C where C is compact, Hausdorff.

Thus we see that a Stone-Cech compactification gives rise to an object β(X) ∈ CHaus
and a universal morphism X I(β(X)) from X to I. Now by Proposition 4.1, this makes
β : Top CHaus a functor, which is left adjoint to the inclusion functor I : CHaus Top.

This then makes β : Top CHaus a reflector, so that the adjunction is a reflection
between Top and CHaus. Consequently we have the bijection

HomTop(X, I(C)) ∼= HomCHaus(β(X), C) =⇒ HomTop(X,C) ∼= HomCHaus(β(X), C).
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since I(C) is technically no different than from C. This bijection is natural in both X and C.

Example 4.2.4. Let AbTF represent the category of abelian groups with torsion free elements
(for a lack of better notation). Then we have a natural inclusion functor I : AbTF Ab.
Now consider the functor F : Ab AbTF, which we define as follows:
Objects. Let G be an abelian group. Then F (G) = GTF where

GTF = {g ∈ G | gn 6= e for n = 1, 2, 3, . . . }.

That is, it sends G to its underlying abelian group of torsion-free elements. It’s not hard
to show this is an abelian group.

Morphisms. Suppose ϕ : G H is a morphism between abelian groups. Then we set
F (ϕ) = ϕTF where

ϕTF : GTF HTF ϕTF (g) = ϕ(g).

Note that this definition will cause no issues, since ord(g) = ord(ϕ(g)). Thus we simply
obtain ϕTF by restricting ϕ to GTF .

To show that F is left adjoint to I, we need to demonstrate that there exists a universal
morphism ηG : G I(F (G)) for every G ∈ Ab. Hence we propose ηG takes on the form

ηG(g) =



g if ord(g) =∞
e otherwise.

To show this is universal from G to I, suppose we have a morphism ϕ : G I(H), where
H ∈ AbTF. Then there exists a morphism ψ : F (G) H such that I(ϕ) ◦ ηG = ϕ. Visually,
that is,

G I(F (G))

I(H)

ϕ

ηG

I(ψ)

F (G)

H

ψ

Sure such a morphism exists, but why the equality?
g ∈ Ker (ηG). If g ∈ Ker(ηG), then g has finite order. Hence we see that ϕ(g) = e; this is

because ord(ϕ(g)) = ord(g) <∞, but the only element in I(H) with finite order is e. We
then have that g ∈ Ker(ϕ). Therefore,

I(ψ) ◦ ηG(g) = I(ψ)(e) = e = ϕ(g).

Hence I(ψ) ◦ ηG = ϕ if g ∈ Ker(ηG).
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g 6∈ Ker (ηG). if g 6∈ Ker(ηG), then we know that ord(g) =∞. Therefore, we see that

I(ψ) ◦ ηG(g) = I(ϕ)(g) = ϕ(g).

Hence I(ψ) ◦ ηG = ϕ for g 6∈ Ker(ηG).
By our previous work, we then have that I(ψ) ◦ ηG = ϕ, as desired. Now ψ is of course
unique based on its construction, since its definition depends directly on ϕ. We then have that
ηG : G I(F (G)) is universal from G to I for each G ∈ Ab!

We then have by Theorem 4.1 that F, I form an adjunction, so that F is the left adjoint of
I. Hence by definition, we see that ABTF forms a full reflective subcategory of Ab.

Exercises

1. Is FinSet a reflective subcategory of Set?

2. Let G and H be a groups. Prove that

G ∗H/[G ∗H,G ∗H] ∼= G/[G,G]⊕H/[H,H]

where G ∗ H denotes the free product of G and H. (What this is saying is that F :
Grp Ab, the abelianization functor, preserves coproducts. Eventually, this fact will
immediately follow by our knowledge of the adjunction Grp Ab.F

U
)
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4.3 Equivalence of Categories

In an ideal world, if we have a category of which we are interested in, our goal would be to find
an isomorphism between it and a category of which we understand very well. We then know
that certain mathematical structures are invariant between transitioning between the two, so
that we could better understand our desired category.

However, this is generally too much to ask for. Many categories which are constructed
are constructed in such a way that they’re not isomorphic to anything we’re familiar with; if
they were, then they probably wouldn’t be interesting. Hence we have a more useful notion of
equivalence between categories.
Definition 4.3.1. Let F : C D be a functor. We say that C is equivalent to D if there
exists a functor G : D C and natural isomorphisms η : IC G ◦ F and ε : F ◦G ID.

In this case, we say both F and G are an equivalence of categories.

Example 4.3.2. Let X and Y be sets, and regard them as discrete categories. Then a functor
F : X Y is just a function between sets. In this case, to say that X and Y are equivalent
is if there exists a functor (function!) G : Y X such that we have natural isomorphisms
ηx : x G(F (x)) and εx : F (G(x)) x. However, each category has nontrivial morphisms;
hence we see that each of these must be identity morphisms so that

G(F (x)) = x F (G(x)) = x.

What this then means is that an equivalence of categories for sets is just a pair of invertible
functions. That is, it gives rise to an isomorphism.

Since η, ε are already natural transformations, this simply makes them natural isomor-
phisms. It turns out that the notion of equivalence is more useful than of an isomorphism. An
isomorphism is just too much to ask, but equivalence does give us nice invariants too.
Definition 4.3.3. A adjoint equivalence between categories C and D is an adjunction
(F,G, η, ε) where the unit and counit η and ε are natural isomorphisms.

It turns our an adjoint equivalence is the same thing as an equivalence between categories.
But before we move on, we prove a lemma and a proposition.
Lemma 4.3.4. Let C be a category, and f : A B a morphism. Then f induces a natural
transformation

f ∗ : HomC(C,−) HomC(C ′,−)

Then f ∗ is a monomorphism if and only if f is an epimorphism, and f ∗ is an epimorphism if
and only if f is a split monomorphism (that is, if and only if f has a left-inverse.)
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Proof.
=⇒ Observe that HomC(C,−) C Set is a functor. Then f ∗ : HomC(C,−)

HomC(C ′,−) is a natural transformation where f : C ′ C. Now suppose η, η′ :
F HomC(C,−), where F : C Set is a functor, are natural transformations. Then
if f ∗ is monic,

f ∗ ◦ η = f ∗ ◦ η′ =⇒ η = η′.

Now let h : A A′ be a morphism in C. Then we have the commutative diagram

A

A′

h

F (A) HomC(C,A) HomC(C ′, A)

F (A′) HomC(C,A′) HomC(C ′, A′)

ηA,η
′
A

F (h) h∗

f∗

h∗

ηA′ ,η
′
A′

f∗

where we denote ηA, η′A on the arrow to signify the fact that both ηA, η′A are morphisms
from F (A) to HomC(C,A). Now let x ∈ F (A). Then

f ∗ ◦ ηA(x) = f ∗ ◦ η′A(x) ⇐⇒ ηA(x) ◦ f = η′A(x) ◦ f.

But if f is monic, then f ∗ ◦ ηA(x) = f ∗ ◦′A (x) implies that ηA = η′A. Hence we see that
ηA(x) ◦ f = η′A(x) ◦ f =⇒ ηA(x) = η′A(x).

⇐= Now suppose f is epic. Then using the same notation as earlier, note that

f ∗ ◦ ηA(x) = f ∗ ◦ η′A(x) ⇐⇒ ηA(x) ◦ f = η′A(x) ◦ f =⇒ ηA = ηA.

Hence we see that f ∗ is a monomorphism.
�

Taking the dual of what we proved, we prove the second part of the lemma. Now we’ll use
this lemma in the theorem below, one which will be very useful.
Proposition 4.3.5. Let (F,G, η, ε) be an adjunction between categories C and D. Then
(i) G is faithful if and only if for each D ∈ D, εD is epic
(ii) G is full if and only if every εD is split monic.
Therefore, G is full and faithful if and only if εD is an isomorphism between F (G(D)) and D.

Proof. If G : D C is a functor, then we see that G itself becomes a natural transformation
between the two functors:

GD,− : HomD(D,−) HomD(G(D), G(−)).

Recall that we have an adjunction given by F,G. Then there exists a bijection ϕ where

ϕC,D′ : HomC(F (C), D′) HomD(C,G(D)).
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Thus ϕ−1 : HomD(C,G(D)) HomD(F (C), D′). Moreover, if D is an arbitrary object, this
becomes a natural transformation between the two functors:

ϕ−1
C,− : HomD(C,G(−)) HomC(F (C),−).

Let C = G(D). Then we have the following sequence of natural transformations:

HomD(D,−) HomC(G(D), G(−)) HomD(F (G(D)),−)GD,− ϕ−1
G(D),G(−)

Composing the natural transformations, we finally obtain a natural transformation
ϕ−1
G(D),G(−) ◦ GD,− : HomD(D,−) HomD(F (G(D)),−). How is this natural transforma-

tion given? We can assign − as D itself, and see what happens when we consider the identity
morphism 1D : D D. In this case

ϕ−1
G(D),G(D) ◦GD,D(1D) = ϕ−1

G(D),G(D)(1G(D)) = εD

by definition of the counit εD. Now we understand how this poorly-notated natural transfor-
mation works! In general, for and f : D D′, we see that

ϕ−1
G(D),G(D′) ◦GD,D′(f) = f ◦ εD. (4.1)

Thus, we see that this natural transformation is in disguise; it’s actually just ε∗D :
HomD(D,−) HomD(F (G(D),−)!
(i) ⇐⇒ If G is faithful, then the natural transformation in equation (7) is one to one. This

makes ε∗D a monomorphism. By the previous lemma, this holds if and only if εD
is epic for every D in D.

(ii) ⇐⇒ On the other hand, if G is full, then this natural transformation in equation (7)
surjective. This makes ε∗D an epimorphism, and by the previous lemma, that holds
if and only if εD is a split monomorphism.

�

Theorem 4.3.6. Let F : C D be a functor. Then the following are equivalent.
(i) G is an equivalence of categories
(ii) G is part of an adjunction (F,G, η, ε) where η, ε are natural isomorphisms
(iii) F is full and faithful, and each object C is isomorphic to G(D) for some object D.

Note that this theorem is symmetric; one could interchange G with F , and then obtain the
same exact results. Thus, one way of stating this theorem is that C and D are equivalent as
categories if and only if there exits full and faithful functors F : C D and G : D C; or if
and only if F,G form an adjoint equivalence.
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Proof.
(i) =⇒ (iii) Suppose we have an equivalence of categories given by F : C D and

G : D C, with natural isomorphisms

ϕ : F ◦G ∼= ID ψ : G ◦ F ∼= IC.

Let f : C C ′ be a morphism in C. Then observe that the following diagram

C

C ′

f

G(F (C)) C

G(F (C ′)) C ′

ψC

G(F (C)) f

ψ′C

is commutative. In an equations, we have that f = ψ′C ◦G(F (f)) ◦ ψ−1
C′ . Thus suppose

that f1, f2 : C C ′ are two morphisms such that F (f1) = F (f2). Then we get a pair
of commutative diagrams, similar to the ones above, which translate into the equations

f1 = ψ′C ◦G(F (f1)) ◦ ψ−1
C′ f2 = ψC′ ◦G(F (f2)) ◦ ψ−1

C′ .

Then if F (f1) = F (f2), the above equations guarantee that f1 = f2. Hence we see that
F is a faithful functor. Since the statement is symmetric in both F and G, we have also
that G is faithful.
To show that F is full, suppose there exists a morphism h : F (C) F (C ′) for a pair
of objects C,C ′. Let f = ψC′ ◦G(h) ◦ ψC . Then we have the commutative squares

G(F (C)) C

G(F (C ′)) C ′.

ψC

G(h) f

ψ′C

G(F (C)) C

G(F (C ′)) C ′.

ψC

G(F (f)) f

ψ′C

and hence we have that G(h) = G(F (f)). But since G is faithful, this implies that
h = F (f). Hence we have that there exists a f ′ : C C ′ such that h = F (f), so that
F is full. Again, by symmetry, we have that G is full, as desired.
Now since ϕ : G ◦ F ∼= IC, we see that every object C is assigned an isomorphism ϕC :
G(F (C)) C. Hence every object C is isomorphic to some G(D) where D = F (C).
Similarly, since ψ : F ◦G ∼= ID, we know that each object D is assigned an isomorphism
ψD : F (G(D)) D. Hence every object D is isomorphic to some object F (C) for
C = G(D).

(iii) =⇒ (ii) Suppose (iii) holds. For any arbitrary object C ∈ C, there exists an isomor-
phism ηC : C G(D) for some object D ∈ D. Denote such an object as F0(C). Now
consider any other morphism g : C G(D′). Then we have that
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C G(F0(C))

G(D′)

ηC

g g◦f−1

is commutative. Now since g ◦ η−1
C : G(F0(C)) G(D′), and because G is full, we

know that there exists a h : F0(C) D′ such that g ◦ η−1
C = G(h). To show that this

is unique, suppose there existed another k : G(F0(C)) G(D′) such that g = k ◦ ηC .
Then by the same argument, there exists a h′ : F0(C) D′ such that G(h′) = k.
Furthermore, we’ll have that

k = G(h′) = g ◦ η−1
C G(h) = g ◦ η−1

C

so that G(h′) = G(h). However, since G is faithful, we have that h′ = h. Hence, h is
unique!
Since h is unique, this implies that ηC : C G(F0(C)) is universal from C to G. Since
such a universal isomorphism exists for each object of C, we have by Proposition 4.1
that there exists a functor F : C D with object function F0(C) which is left adjoint
to G. Hence we have an adjunction (F,G, η′, ε). However, since universal morphisms
are unique, we see that η′ = η, so that η, our unit, is a natural isomorphism.
Finally, observe that for any object D, we have that

G(εD) ◦ ηG(D) = 1G(D)

for our adjunction. Since ηG(D) is an isomorphism, we have that G(εD) = η−1
G(D). Sine

G is full and faithful, we see that εD must be an isomorphism as well.
Thus, in total, we have an adjoint equivalence (F,G, η, ε), as desired.

(ii) =⇒ (i) This direction is clear, since an adjoint equivalence automatically establishes
an equivalence of categories.

With (i) =⇒ (iii) =⇒ (ii) =⇒ (i), we see that all of the conditions are equivalent. �

Example 4.3.7. Let R and S be rings and consider the categories R-Mod and S-Mod. Then
there are two different “product” categories we can form: The categories (R × S)-Mod and
R-Mod× S-Mod

Next, we introduce some properties of equivalences.
Proposition 4.3.8. Let F : C D be an equivalence of categories with the corresponding
inverse functor G : D C. Let f : C C ′ be a morphism in C. Then
(i) f is a monomorphism (epimorphism) if and only if F (f) is a monomorphism (epimorphism)
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(ii) C is initial (terminal) if and only if F (C) is initial (terminal).

Consequently, we have that f is an isomorphism (a monomorphism and epimorphism) if
and only if F (F ) is an isomorphism. Note this is not generally true! Additionally, we also
have that C is a zero object (terminal and initial) if and only if F (C) is a zero object. Finally,
observe that this proposition is symmetric, so that the same conclusions hold for morphisms
and objects in D governed by G : D C.

Proof.
(i) =⇒ Suppose f : C C ′ is a monomorphism. Consider two morphisms g, h : D

F (C) such that F (f) ◦ g = F (f) ◦ h. By the previous theorem, we know however
that there exists an object A of C such that D ∼= F (A). Hence there exists an
isomorphism θ : F (A) D. We then have the diagram:

F (A) D F (C) F (C ′)θ

g

h F (f)

Note that h ◦ θ, g ◦ θ : F (A) F (C). Since F is full, we know that there exists
morphism k, k′ : A C such that g ◦ θ = F (k) and h ◦ θ = F (k′). Now observe
that

F (f ◦ k) = F (f) ◦ F (k) = F (f) ◦ h ◦ θ
F (f ◦ k′) = F (f) ◦ F (k′) = F (f) ◦ g ◦ θ.

However, since F (f) ◦ h = F (f) ◦ g, we see that F (f ◦ k) = F (f ◦ k′). However,
since F is faithful, we have that f ◦ k = f ◦ k′. But since f is a monomorphism,
we have that k = k′. Hence F (k) = F (k′) =⇒ g ◦ θ = k ◦ θ, and since θ is an
isomorphism, we have that h = g. Therefore, F (f) is also monic.

⇐= Suppose f : C C ′ and F (f) is monic. Consider two morphism g, h : A C ′

in C, and suppose that f ◦g = f ◦k. Then F (f)◦F (g) = F (f)◦F (k) =⇒ F (g) =
F (k), since F (f) is monic. However, F is faithful, so that g = k. Hence f is monic
as well.

(ii) =⇒ Suppose C is initial in C. Let D be an object in D. Then observe that, since C and
D are equivalent, there exists an isomorphism θ : F (A) D for some object A of
C. Since C is initial, we know that there exists a unique morphism fC : C A.
Hence F (fC) : F (C) F (A). We then have that F (fc) ◦ θ : F (C) D. Hence
there exists a morphism from F (C) to D.
Now suppose f1, f2;F (C) D. Then θ−1◦f1, θ

−1◦f2 : F (C) F (A). Since F is
full, we know that there exist morphism k1, k1 : C A such that F (k1) = θ−1 ◦f1

and F (k2) = θ−1 ◦ f2. However, since C is initial, we see that k1 = k2 = fC . Hence
f1 = f2, so that there is exactly one morphism f1 = f2 : F (C) D.
Since D was an arbitrary object of D, we have that F (C) is initial.

⇐= Suppose F (C) is an initial object. Consider any object C ′ of C. Then since F (C)
is initial, there exists a unique morphism f : F (C) F (C ′). Since F is full, we
know that this corresponds with a morphism k : C C ′ such that F (k) = f .
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Hence we have a unique morphism k : C C ′. And since C ′ was an arbitrary
object of C, we have that C is initial, as desired.

�

The proofs in which we proved f to be an epimorphism, and for C to be a terminal object,
are very similar. This proposition will soon be generalized, but this gives us insight into how
useful the concept of equivalent categories truly is.
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4.4 Adjoints on Preorders.

Interesting things happen when one applies adjoint concepts to functors between preorders;
ones which preserve order in a special way. It’s actually often the case where we have two
mathematical structures involving chains of arrows which reverse when transferring between
one and the other. We give such a concept a definition first, before introducing a theorem
about such structures.
Definition 4.4.1. Let P and Q be two preorders. If there exists functors F : P Q and
G : Q P such that

F (P ) ≤ Q ⇐⇒ P ≤ G(Q),

That is, there exists f : F (P ) Q if and only if there exists g : P G(Q), then F and G
are called a monotone Galois connection. On the other hand, if we have that

F (P ) ≤ Q ⇐⇒ P ≥ G(Q)

then F and G are called a antitone Galois connection.

Theorem 4.4.2. Let P ,Q be two preorders, and suppose F : P Qop and G :
Qop P are two order preserving functors. Then F is left adjoint to G if and only if
for all P ∈ P and Q ∈ Q

F (P ) ≥ Q ⇐⇒ P ≤ G(Q).

Given such an adjunction, we then have that our unit establishes P ≤ G(F (P )) and the
counit establishes F (G(Q)) ≤ Q.

Proof. Observe that if F is left adjoint to G, then we have the bijection

HomQop(F (P ), Q) ∼= HomP(P,G(Q))

which gives rise to the desired correspondence; on the other hand, such a bijection gives rise to
an adjunction. With such an adjunction, we know that for each P,Q, there exist morphisms
ηP : P G(F (P )) and εQ : F (G(Q)) Q. Hence P ≤ G(F (P )) and F (G(Q)) ≥ Q. �

The above theorem came out of the observation that there is a connection between fields,
their subfields, and their groups of automorphisms, an observation which arises in Galois Theory.
The goal of Galois Theory is to understand polynomials and their roots; when they can be
factorized, when and where we can find their roots. The study of Galois groups is now used
widely in number theory. For example, part of Andrew Wiles’ work in proving Fermat’s Last
Theorem involved Galois representations.

It was this theorem, rooted in Galois Theory, that motivated the Theorem 4.?? at the
beginning of this section. The Fundamental Theorem of Galois Theory is simply a stronger,
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special case, since in this case, the functors are literally inverses of each other. The theorem we
introduced, however, simply requires the functors to be adjoints of one another.

Example 4.4.3. Let U, V be sets, and observe that their power sets P(U) and P(V ) form
categories; specifically, preorders, ordered by set inclusion.

Suppose f : U V is a function in Set. Then f induces a functor f∗ : P(U) P(V ),
where

f∗(X) = {f(x) | x ∈ X}.
Note that if X ⊆ X ′, then f∗(X) ⊆ f∗(X ′). Hence this is an order-preserving functor. Now
observe that f also induces a functor f ∗ : P(V ) P(U) where

f ∗(Y ) = {x | f(x) ∈ Y }.

Note that this also preserves order. In addition, we have that if f∗(X) ≤ Y , then this holds if
and only if f(X) ⊆ Y . We then have that this holds if and only if X ⊆ f∗(Y ), Hence we have
a Galois connection, so that we may apply Theorem 4.?? to conclude that f∗ is left adjoint to
f ∗.
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4.5 Exponential Objects and Cartesian Closed Categories.

Before we introduce the notion of cartesian closed category, we begin with a preliminary propo-
sition.
Proposition 4.5.1. Suppose C is a category, and consider the functors

U : C 1 ∆ : C C × C.

where 1 is the one object category.
(i) If U has a left adjoint, then C has an initial object.
(ii) If ∆ has a left adjoint, then C has finite coproducts.
(iii) If U has a right adjoint, then C has a terminal object.
(iv) If ∆ has a right adjoint, then C has finite products.

The proof is a straightforward, although tedious, so we sketch it out as follows.

Proof.
Adjoints of U . First, let F : 1 C be a left adjoint of U . Suppose F (1) = I in C. Then

for any C ∈ C, we have the bijection HomC(F (1), C) ∼= Hom1(1, U(C)) which implies that

HomC(I, C) ∼= Hom1(1, 1).

In other words, for each object C, there is exactly one and only one morphism iC : I C,
which makes I an initial object.

On the other hand, suppose G : 1 C is a right adjoint of U . Then if G(1) = T , we have
the bijection Hom1(U(C), 1) ∼= HomC(C,G(1)) which implies that

Hom1(1, 1) ∼= HomC(C, T )

so that for each object C there exists a unique morphism tC : C T , which makes T a
terminal object. Hence left and right adjoints guarantee the existence of initial and terminal
objects.

Adjoints of ∆. Let F : C × C C be a left adjoint of ∆, so that we have the
relation

C × C CF

∆

Then for each object (A,B) ∈ C × C, we have the morphism η(A,B) : (A,B) ∆(F (A,B)),
which we can rewrite as η(A,B) : (A,B) (F (A,B), F (A,B)). We can put this into a
universal diagram

(A,B) (F (A,B), F (A,B))

(C,D)

η(A,B)

f
(g′,g′)

(A,B) (AqB,AqB)

(C,D)

(i,j)

f
(f ′,f ′)
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where the diagram on the right is the coproduct diagram of A × B. Since both of the pairs(
(F (A,B), F (A,B)), η(A,B)

)
and

(
(A×B,A×B), (πA, πB)

)
are universal from (A,B) to ∆,

they must be isomorphic. As two universal objects are isomorphic, we therefore have,

F (A,B) ∼= AqB

so that a left adjoint gives rise to products.
Let G : C × C C be a right adjoint of ∆, so that we have

C C × C∆

G

The adjunction gives rise to a universal morphism ε(A,B) : ∆(G(A,B)) (A,B), which we
can rewrite as ε(A,B) : (G(A,B), G(A,B)) (A,B). We then have the diagram

(A,B) (G(A,B), G(A,B))

(C,D)

ε(A,B)

f
(g′,g′)

(A,B) (A×B,A×B)

(C,D)

(πA,πB)

f
(f ′,f ′)

where the diagram on the right is the product diagram of A×B. Thus we see that(
(G(A,B), G(A,B)), ε(A,B)

)
and

(
(A × B,A × B), (πA, πB)

)
are both universal from ∆ to

(A,B). As universal objects from the same construction are isomorphic, we have that

G(A,B) ∼= A×B

so that this adjunction gives rise to coproducts. �

Thus if we have left and right adjoints of the functors U and ∆, we get initial and terminal
objects as well as finite products and coproducts. Note, however, that finite products require
(and give rise to) initial objects, and similarly that finite coproducts require (and give rise to)
terminal objects.

Next, we make the following definition.
Definition 4.5.2. Let C be a category with finite products. Suppose Y, Z are objects in C. We
say ZY is an exponent object in C if there exists a morphism eval : (ZY × Y ) Z which
is universal from −× Y : C C to the object Z.

Visually, this translates into requiring that the following diagram commutes.

Z ZY × Y

X × Y

eval

g (h,idY )

ZY

X

h
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Hence, every morphism, with the domain being any product with Y , and codomain being
Z, uniquely factors through ZY × Y .

Here, we’ll stop and look at a pretty cool real world example.

Example 4.5.3. Consider the category Set. Then we know that, for any two given objects Y
and Z, we can form a set of functions between the objects:

HomSet(Y, Z).

Thus, the collection of morphisms from sets Y to Z is itself a set, and hence a member of Set.
Now let A be any object in Set, and let

X = {f ∈ Set | f : A× Y Z}.

Define eval : HomSet(Y, Z)× Y Z as, who would’ve guessed, the evaluation:

eval(f(y), y′) = f(y′).

Now for each a ∈ A, we can define a function ga : X × Y Z where for each f : A× Y Z

ga(f, y′) = f(a, y′) ∈ Z

so this is sort of a "double" evaluation function. Then for every such ga, there exists a unique
ha : X HomSet(Y, Z) where for each f : A× Y Z

ha(f) = f(a, y) : Y Z.

Thus we get the following commutative diagram:

Z HomSet(Y, Z)× Y

X × Y

eval

ga (ha,idY )

ZY

X

ha

What is this? What’s really going on and why do we care?
This construction relates to a concept in computer science called currying. Applied category
theory in computer science generally works in Set, so that’s why this idea transfers over.

The idea is: given a multivariable function, do we evaluate all arguments at once, or eval-
uate just one argument, thereby sending a function to another function? Both methods can
offer advantages. But universality tells us that, in the end, they’re the same thing.

We can think ofX×Y as being elements (f(a, y), y′) where f : A×Y Z. Then h evaluates
f(a′, y) for some a′, thus sending the function f : A × Y Z to the function f : Y Z.
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That is,
(h× idy) ◦

(
(f(a, y), y′)

)
= (f(a′, y), y′).

Finally, eval evaluates f(a′, y) at y′, returning an object in Z.
Alternatively, we can start with the object (f(a, y), y′), and simply act on g, which evaluates

it at both a′ and y′, returning the same object f(a′, y′). Thus in the realm of computer science,
we may think of the morphisms (h, idy), g and eval as commands, as this is how currying is
often done.

The universality of this constructions states that both methods are the same; that is,

g = eval ◦ (h× idY ).

Since we started with arbitrary objects in Set, the consequence for computer science is that
we can always curry these functions. Typically what is curried are types, such as Bool or Int.

In an arbitrary category of finite products, the exponential object is just a generalization of
currying. But in Set, we see that an exponential object exists for any two pairs of sets. Thus,
can we turn this exponential assignment into a functor? Yes,we can.
Definition 4.5.4. Let C have finite products and exponential objects for every pair of objects.
Then for each Y in C we can create an exponential functor EY : C C as follows.
Objects. For each Z ∈ C, we define EY (Z) = ZY .
Morphisms. Let f : A B be in C. Then we note that we have the following diagrams.

A AY × Y

X × Y

evalA

g (h,idY )

AY

X

h

B BY × Y

X × Y

evalB

g′
(h′,idY )

BY

X

h′

Now observe that we can form the morphism f ◦ evalA : AY × Y B. Hence by
universality of BY , there exists a unique morphism h′ : AY BY . Diagrammatically,
we take the above diagram on the right, and replace X with AY and g with f ◦ evalA.

B BY × Y

AY × Y

evalB

f◦evalA
(h′,idY )

BY

AY

h′

Since h exists if f : A B exists, we therefore define

EY (f : A B) = h′ : AY BY
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where h′ is the unique morphism such that

f ◦ evalA = evalA ◦ (h′, idY ).

Note that there’s one more cool connection here. If we have a category with finite products,
and one in which exponential objects exist, then we have a morphism evalA : AY × Y A

which is universal from the functor − × Y : C C to A. Therefore, this is a counit!
There’s an adjunction hiding here.
Proposition 4.5.5. Let C be a category with finite products and exponential objects. Let Y
be an object, and define the functors

PY = (−)× Y : C C
EY = (−)Y : C C.

Then EY is right adjoint to PY for every Y ∈ C. Therefore,

HomC(X × Y, Z) ∼= HomC(X,ZY )

which is natural for all objects X, Y, Z ∈ C.

Proof. For each object A ∈ C, the exponential object gives rise to a universal morphism
evalA : AY × Y A. So on one hand, we get the diagram on the left

A AY × Y

X × Y

evalA

g (h,idY )

AY

X

h

A PY (EY (A))

PY (X)

evalA

g (h,idY )

AY

X

h

but on the other hand, the diagram on the right is exactly equivalent. Hence we see that eval
is actually a counit εA : PY (EY (A)) A. Since such a counit exists for each A, this gives
rise to an adjunction, so that EY is right adjoint to PY for every object Y in C. �

Finally, we have everything we need to move onto to the main point of this section.
Definition 4.5.6. Let C be a category. We say C is a cartesian closed category if the
functors

U : C 1 ∆ : C C × C PY = (−)× Y : C C
have right adjoints. In other words, C is cartesian closed if

1. There exists a terminal object T

2. C has finite products

3. An exponential object AY for every A ∈ C for all Y .
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Thus the work we just did was used in showing that our three-bullet point list is another
definition of a cartesian closed category. Often, only one definition or the other is offered, and
it’s not trivial how they’re equivalent, so it can be confusing. Thus our work shows that either
definition is equivalent.

Some examples include Set, which we already dealt with. Set has a terminal object (empty
set), has finite products, and has an exponential object. More interesting is Cat, which is
cartesian closed. In this case, 1 is the terminal object, Cat is closed under finite products, and
the exponential object exists. In this case, CB is simply the functor category!

At first, it seemed silly to define CB as the category of functors from B to C, since it seemed
that it ought to be denoted BC. However, we see that this was really just because of the concept
of exponentials, which isn’t known when being introduced functor categories.



Zp

Z Z/pZ Z/p2Z Z/p3Z · · ·

π0 π1 π2
π3

f0 f1 f2 f3

HomMon(F (X),M) ∼= HomSet(X,U(M)

Gal(L/F ) =




(· · · ,σk, · · · ) ∈

∏

K∈F(L/F )
Gal(K/F ) | projKi/Kj ◦ πKi

= πKj





Gal(L/F )

Gal(Ki/F ) Gal(Kj/F )

πKi
πKj

projKi/Kj

Fk

D
∏

i∈J
Fi

∏

u:i→k

Fk

Fi Fk

e

µi

f

g

πk

πi π′
k

π′
k

F (u)

5. Limits and Colimits.

Before we begin, we reintroduce certain terminology.
Definition 5.0.1. Let C be a category. We define a diagram of a shape J to be a functor
F : J C.
Here, J is generally thought of as an indexing category. We use the word diagram because the
image of J under F is literally a diagram of morphisms.

i

j k

gf

h

b bF

F (i)

F (j) F (k)

F (g)F (f)

F (h)

In this example, on the left we have the category J , and on the right we have the diagram of
J in C. Now recall the diagonal functor

∆ : C CJ

is a functor which sends each object C ∈ C to the functor ∆(C) : J C, where, for each j ∈ J ,
we have

∆(C)(j) = C.

This motivates the following concept.
Definition 5.0.2. Let C be a category and F : J C be a functor, where J is a small category.
We define a cone over F with apex C to be a natural transformation

∆(C) F.
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Equivalently, it is an object C equipped with morphisms ui : C F (i) for each i ∈ J such
that, for every f : i j in J , the diagram

C

F (i) F (j)

ui uj

f

commutes.
In the same fashion, we may define a cocone with base C under F as a natural trans-

formation
F ∆(C).

Equivalently, it is an object C equipped with morphisms ui : F (i) C for each i ∈ J such
that, for every f : i j in J , the diagram

F (i) F (j)

C

f

ui uj

commutes.

Alternatively, we could have defined the above, second definition as a "cone," and then
defined the first definition as the "cocone". Why? Well, it’s the same arbitrary nature in which
physicists encountered electrical charge; one was named negative, the other was named positive.
For all we know, in a parallel universe protons were said to have "negative" charge and electrons
were said to have "positive" charge. In the end, nomenclature is arbitrary when it comes to
duality.

Try to recall: what is a limit in a category C? When we speak of one, we’re talking about
the limit of a functor

F : J C.
There are multiple, but equivalent ways to think about it.

• A limit can be thought of as a universal object (LimF, u : ∆(LimF ) F ) from ∆ to
F .

F ∆(LimF )

∆(C)

u

f
∆(h)

LimF

C

h
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• A limit can also be thought of as a universal cone. We know that if we have a limit, then
we have an object LimF and a natural transformation ∆(LimF ) F . Hence, this forms
a cone. As we also pointed out, a cone induces a family of morphisms ui : LimF F (i).

What makes this cone a "universal" cone is the fact that, for any other cone ∆(C) F ,
the above diagram establishes the diagram below.

C

LimF

F (i) F (j)

h

fi fj

ui uj

F (g)

• In a better way, one can think of it as being a universal spider! One could also think of
it as a squished spider, or more optimistically, a two dimensional spider.

C

LimF

F (i) F (j) · · · F (k) F (l)

fvi
vj vk

vl

ui

uj uk

ul

Now try to recall what Colimits of a diagram F : J C are. As before, there are multiple,
but equivalent ways to think about it.

• A colimit can be thought of as a universal object (ColimF, u : F ∆(ColimF )) from
F to ∆.

F ∆(ColimF )

∆(C)

u

f
∆(h)

LimF

C

h

• A colimit can also be thought of as a universal cocone (or just cone). Given a colimit of
F : J C, we have an object ColimF and a natural transformation u : F ∆(ColimF ).
Hence, this forms a cocone (again, or just cone). As we also pointed out, a cocone induces
a family of morphisms ui : F (i) ColimF .
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What makes this cocone a "universal" cocone is the fact that, for any other cocone F
∆(C), the above diagram establishes the diagram below.

F (i) F (j)

LimF

C

F (g)

fi

ui

fj

uj

h

• One can also think of this as a universal spider! Or it can be thought of as a jealous
object; if any other object C is "the center of attention,"i.e. has morphisms pointing to it,
ColimF will get angry, so the morphisms have to go through ColimF via f first before
they reach C.

C

ColimF

F (i) F (j) · · · F (k) F (l)

hfi
fj fk

fl

ui

uj uk

ul
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5.1 Every Limit in Set; Creation of Limits

While we have been discussing limits and colimits of functors, we generally consider the case
in which they exist. However, they sometimes don’t exist; after all, limits and colimits are
universal objects. Categories which do admit these constructions are often convenient places
to work inside of. This is analogous to complete metric spaces X, where every Cauchy
sequence is convergent in X. With such an analogy in mind, the following definition should
make sense.
Definition 5.1.1. Let C be a category. We say C is complete if all small diagrams in C has
limits in C; in other words, if every functor F : J C, where J is a small category, has a limit
in C.

Similarly, we define:
Definition 5.1.2. Let C be a category. We say C is cocomplete if all small diagrams in C
has colimits in C. In other words, every functor F : J C, where J is a small category, has a
colimit in C.

Now we show how to construct limits inside of Set, thereby showing that this category is
complete.

Example 5.1.3. For this example, let J = ωop, where ω is the preorder of natural numbers.
Since we are asking for the opposite category, we reverse the arrows and get the diagram below.

0 1 2 3 · · ·

Now suppose F : ωop Set is a functor. Then if we write F (i) = Ai with Ai ∈ Set, then we
see that the image of F is a family of sets Fn with functions fn : An+1 An:

A0 A1 A2 A3 · · ·f0 f1 f2 f3

One way we could try forming a limit of this diagram is by constructing a cone, using the
product of these sets.

A0 A1 A2 A3 · · ·

∞∏
i=0

Ai

f0 f1 f2 f3

π0
π1 π2

π3

However, this isn’t exactly what we want. A cone must form a commutative diagram and it’s
not always true that fn◦πn+1 = πn. So let’s instead restrict our attention to a subset L ⊆

∏

i=0
Ai
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where the points (a0, a1, . . . , an, . . . ) do satisfy this relation.

L =
{
x = (a0, a1, a2, . . . , ) | fn ◦ πn+1(a) = πn(x)

}
.

and equip L with the functions π′n where

π′n = πn ◦ i : L An

where i : L
∞∏
i=1

Fi is the inclusion function. Then we have

A0 A1 A2 A3 · · ·

L

f0 f1 f2 f3

π′0
π′1 π′2

π′3

so that L forms a cone. We now prove that this cone is universal.
Lemma 5.1.4. The set L is the limit of the functor F : ωop Set.

Proof. Suppose K is another cone over our diagram, equipped with morphisms µn : K Fn.
Since this is another cone, we have that fn ◦ µn+1 = µn. Now let k ∈ K. Then we can form
an element

x = (µ0(k), µ1(k), µ2(k), . . . ) ∈
∞∏

i=1
Fi

since each µn(k) ∈ Fn. Now observe that

fn ◦ πn+1(x) = fn(µn+1(k)) = µn(k) = πn(x).

Thus we see that fn ◦ πn+1(x) = πn(x), so that by definition, x ∈ L. Hence we can create a
unique function g : K L where for each k ∈ K,

g(k) = (µ0(k), µ1(k), µ2(k), . . . )

so we then have that
π′n ◦ g = µn.

Hence, this shows that (L, πn : L Fn) is universal, so that L = LimF !

F0 F1 F2 F3 · · ·

L = LimF K

f0 f1 f2 f3

g

�



5.1 Every Limit in Set; Creation of Limits 201

If we want to view this in terms of the spider diagrams, then we have

K

L = LimF

F0 F1 F2 F3 · · ·

gµ0
µ1 µ2

µ3

π′0

π′1 π′2

π′3

f0 f1 f2 f3

Here, we’ve taken a nice, simple diagram F : ωop Set and shown that there exists a
limit L of the diagram inside of Set. However, we can do this more generally, so that Set is
complete. To illustrate this we need the notion of a set of cones.

Note that in the last example, we can actually think of each x = (x0, x1, x2, . . . ) ∈ LimF

as a cone. How so?

1. For each x = (x0, x1, x2, . . . ) ∈ LimF , consider the one-point set {∗}.
2. Associate {∗} with the family of functions π∗n : {∗} Fn, defined as

πxn(∗) = xn.

Now since x ∈ LimF , we know that fn(xn+1) = xn. But, note that this is equivalent to stating
that fn ◦ πn+1(∗) = πn−1(∗). Therefore the diagram

{∗}

Fn Fn+1

πxn πxn+1

fn

commutes for every fn : Fn+1 Fn, so that’s how we can regard every x ∈ LimF as a
cone. Therefore, if we denote Cone(∗, F ) as the set of all cones of {∗} over F , we see that
Cone(∗, F ) = LimF .
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Theorem 5.1.5. The category Set is complete. That is, if J is a small category, every
functor F : J Set has a limit

LimF = Cone(∗, F )

where Cone(∗, F ) is the set of all cones of {∗} over F . The set Cone(∗, F ) forms the limit
cone with the morphisms vi : Cone(∗, F ) Fi described as follows. If x ∈ Cone(∗, F ),
then x has a family of morphisms σxi : {∗} Fi. Therefore,

vi : Cone(∗, F ) Fi vi(x) = σxi (∗).

Proof. First, since J is small, we know that Cone(∗, F ) is a set. For each j ∈ J , establish the
morphism vj : Cone(∗, F ) Fj where vj(x) = σxj (x), and σxj : {∗} Fj is the morphism
associated with x as a cone over F .

We now show that it is a cone. Suppose f : i j is a morphism in J . Then observe that
F (f) ◦ vi(x) = F (f) ◦ σxi (x) = σxj (x) = vj(x). Hence the diagram

Cone(∗, F )

Fi Fj

vi vj

F (f)

commutes, so Cone(∗, F ) really does form a cone over F . To show this is universal, and hence
our limit, suppose that A in Set also forms a cone over F with morphisms τj : X Fj.
Note that for each a ∈ A, we can form a cone from {∗} to F , if we define σaj : {∗} Fj as
σaj (∗) = τj(a). Then the diagram

Cone(∗, F )

Fi Fj

σai
σaj

F (f)

must also commutes since it commutes for each τj. Thus we can define a unique function
g : A Cone(∗, F ), where each point a is sent to the cone which it forms from {∗} over F .
Therefore, Cone(∗, F ) is universal, so that

LimF = Cone(∗, F )

as desired. �
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The above proof can be repeated to show that others categories are complete, like Grp or
Rng.

In attempting to find the limit F : J C in some category C, one strategy is to to compose
this functor with another one G : C D, with the prior knowledge that D is complete. If one
knows D is complete, one then use this information to find the limit of F : J C.
Definition 5.1.6. Let F : J C be a functor. A functor G : C D creates limits for F if
whenever (LimG ◦F, τ : ∆(LimG ◦F ) G ◦F ) exists, the limit (LimF, σ : ∆(LimF ) F )
such that

G(LimF ) = LimG ◦ F G(σ) = τ.

Similarly, a functor G : C D creates colimits for F if whenever (ColimG◦F, τ : G◦F
∆(LimG ◦ F ) exists, the colimit (ColimF, σ : F ∆(ColimF ) exists and

G(ColimF ) = ColimG ◦ F G(σ) = τ.

The diagram below visually explains this process; the existence of limit in D on the left
implies the existence of the limit in C on the right. Moreover, the diagram on the left is the
image of the diagram on the right under G.

D

LimG ◦ F

G(F (i)) G(F (j))

h

fi fj

τi τj

G(F (u))

=⇒

C

LimF

F (i) F (j)

h

fi fj

σi σj

F (u)

Example 5.1.7. Consider a functor F : J Grp. We’ll show that the forgetful functor
U : Grp Set creates limits for Grp.

By the previous theorem, we know that U ◦ F ; J Set must have a limit Cone(∗, U ◦ F )
with the family of morphisms vi : Cone(∗, U ◦F ) U ◦Fi. Now denote the set Cone(∗, U ◦F )
as L. Then we can endow L with a group structure.

• For any σ, τ ∈ L, we define σ × τ to be the cone where (σ × τ)i = σi · τi, where · is the
product in Fi.

• For σ ∈ L, we define the inverse to be the function σ−1 where (σ−1)i = σ−1
i , with the

inverse being taken in Fi.

All we’re really doing here is taking advantage of the fact that each σ, τ is really just a family
of functions σi, τi : {∗} Fi. Thus we’re taking advantage of the group structure in each Fi.

Thus L = Cone(∗, U ◦ F ) is a group, which then makes the family of morphisms vi :
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Cone(∗, U ◦ F ) into a family of group homomorphisms. To show this, simply observe that

vi(σ × τ) = (σ × τ)i = σi · τi = vi(σ) · vi(τ).

Now we claim that the cone Cone(∗, U ◦ F ) with the morphisms vi : Cone(∗, U ◦ F ) Fi is
universal. To show this, let G be a group and suppose G forms a cone over F with morphisms
ϕi : G Fi. Then U(G) forms a cone over Cone(∗, U ◦ F ) in Set with morphisms U(ϕi) :
U(G) U(Fi).

Since we know Cone(∗, U ◦F ) is a universal cone in Set, there exists a h : U(G) L such
that U(ϕi) = U(vi) ◦ hi. However, note that h can be thought of as a group homomorphism.
For any g, g′ ∈ G, we have

hi(g · g′) = ϕi(g · g′) = ϕi(g)× ϕi(g′) = hi(g)× hi(g′)
= (h(g) · h(g′))i.

Therefore, h : U(G) L can be realized back into Grp as a group homomorphism h : G L,
thereby showing Cone(∗, U ◦F ) is a universal cone in Grp. This is one way in showing Grp is
complete.

What we really did in the last example was nothing special. Using the fact that Set is
complete, we transferred F : J Grp over to Set via the forgetful functor U : Grp Set.
We calculated the limit, and showed that this can be realized as a limit in Grp. In this sense,
U : Grp Set creates limits in Grp. A similar strategy can be carried out for other
forgetful functors.

Example 5.1.8. Let C be a category and A an object of C. Recall that with the comma category
(A # C), we have a projection functor P : (A # C) C where on objects (C, f : A C) and
morphisms h : (C, f : A C) (C ′, f : A C ′) we have that

P (C, f : A C) = C P (h) = h : C C ′.

Now for any functor F : J (A # C), the functor P : (A # C) C creates limits. To see this,
we first interpret a functor F : J (A # C). For each j, we have that

F (j) = (Cj, fj : A Cj)

for some Cj ∈ C and fj : A Cj. If u : j k is a morphism in J , then F (u) : Cj Ck
is a morphism in C such that the diagram below commutes (as, that’s what morphisms do in
comma categories).
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A

Cj Ck

fkfj

F (u)

Note that this is a cone over F in C. Now suppose we have a limit LimP ◦ F in C with
morphisms µi : LimP ◦ F Ci with i ∈ J . Then because LimP ◦ F is a limiting cone, and
we must have a unique v such that the diagram below commutes.

A

LimP ◦ F

F (i) F (j)

v

fi fj

µi µj

F (u)

The claim now is that (LimP ◦ F, v : A LimP ◦ F ) is the limit LimF of F : J (A # C),
which is left for the reader to show.

Exercises

1. i. Let J = ω, and let F : J Set be a functor were F (i) = Ai. Show that ColimF

exists and give an expicit description of it.
Hint: It will be a set endowed with an equivalence relation.

ii. How does your answer chance when F : J Set is contravariant?
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5.2 Inverse and Direct Limits.

In the previous example, we calculated the limit of the diagram indexed by ωop. It turns out
that in general, we can construct a lot of mathematical ideas by first modeling them as the
limit of a functor F : J C, where J is a partially ordered set. Thus we give a special name
to this concept.
Definition 5.2.1. Let C be a category, and suppose the F : Jop C has a limit object LimF

in C, where J is a partially ordered set (where, if i ≤ j, then there exists f : i j). Then
LimF is said to be a inverse limit or projective limit.

Dually, we define the colimit of a functor F : J F to be direct limit.

There are many famous examples of these limits, with the following example probably being
the most familiar.

Example 5.2.2. Consider the functor F : ωop Rng where we define F (n) = Fn = Z/pnZ
with p being a prime. Then we have a diagram

Z Z/pZ Z/p2Z Z/p3Z · · ·f0 f1 f2 f3

where the maps fn : Z/pn+1Z Z/pnZ are the projection maps. The limit of this diagram
turns out to be the p-adic integers Zp, and this is one way of defining them. The most popular
way to define them it to work in ring theory, establish p-adic valuations, and realize that the
valuations turn Z into a metric space; one which can be completed with respect to the metric
to give rise to Zp.

First, observe that they form a cone. Define the map

πn : Zp Z/pnZ π

( ∞∑

k=0
akp

k

)
=

n−1∑

k=0
akp

k + pnZ.

Now observe that

fn ◦ πn+1

( ∞∑

k=0
akp

k

)
= fn

(
n∑

k=0
akp

k + pn+1Z
)

=
n−1∑

k=0
akp

k + pnZ

= πn

( ∞∑

k=0
akp

k

)

so we may conclude that fn ◦ πn+ 1 = πn. Therefore, Zp does in fact form a cone with the
morphisms πn, so the following diagram commutes.

Zp

Z Z/pZ Z/p2Z Z/p3Z · · ·

π0 π1 π2

π3

f0 f1 f2 f3
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Showing this is universal is simple once we realize that each element of Zp may be thought of
as a cone, in the same fashion as we did with Set. That is, we can just apply the previous
theorem to Rng. This then shows that it’s the universal object which we desire.

What about direct limits? A less-talked about idea , although definitely not less interesting,
is the dual of the above construction.

Example 5.2.3. Consider the functor F : ω Grp where we have F (n) = Fn = Z/pnZ,
with p being a prime. This time however we have the diagram

Z Z/pZ Z/p2Z Z/p3Z · · ·f0 f1 f2 f3

where we define each fn : Z/pnZ Z/pn+1Z as the homomorphism

fn

(
n−1∑

k=0
akp

k + pnZ
)

=
n∑

k=0
akp

k+1 + pn+1Z.

That is, we simply multiply the sum by a power of p. It turn outs that the direct limit is the
Prüfer p-Group Z(p∞). The Prüfer 2-Group is pictured below.
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x

iy

r

The Prüfer p-group is the set of all pn roots of unity, as n ranges over all positive integers.
Hence the points lie on the complex unit circle. Specifically, it is the group

Z(p∞) =
{
exp

(
2πim
pn

)
| 0 ≤ m < pn, n ∈ Z+

}

which forms a group under complex multiplication. How does this form a limit for our diagram?

Inverse limits are also used in Galois Theory. In Galois Theory, one can define a field
extension L/F to be a finite, normal, separable extension. However, it turns out that one can
remove the requirement for the extension to be finite. We then obtain infinite Galois groups,
which are constructed as follows.
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Example 5.2.4. Let F be a field, and suppose L/F is normal, separable extension (not
necessarily finite!). Then we can define L/F to be a Galois extension, and we may speak of a
Galois group Gal(L/F ), as follows.

Let F(L/F ) be the category of all finite, normal extensions K of F such that F ⊆ K ⊆ L,
and G(L/F ) is the category of all their Galois groups. Note that both F(L/F ) and G(L/F ) are
partially ordered sets, ordered by subset inclusion. To be precise, if Ki ⊆ Kj are in F(L/F ),
then

Gal(Kj/F ) ⊆ Gal(Ki/F )

and because G(L/F ) is a preorder on subset inclusion, this implies the existence of some arrow
f : Gal(Kj/F ) Gal(Ki/F ). We can describe f = projKj/Ki where

projKj/Ki : Gal(Kj/F ) Gal(Ki/F ) projKj/Ki(σ) = σ
∣∣∣
Ki
.

That is, we take each permutation σ ∈ Gal(Kj/F ) and restrict its action to Ki, thereby making
it a permutation of Ki which fixes F , and therefore a member of Gal(Ki/F ).

Now consider the product with the associated morphisms
∏

K∈F(L/F )
Gal(K/F ) πKi :

∏

K∈F(L/F )
Gal(K/F ) Gal(Ki/F )

Then we define

Gal(L/F ) =


x = (· · · , σk, · · · ) ∈

∏

K∈F(L/F )
Gal(K/F ) | projKi/Kj ◦πKi(x) = πKj(x)



 .

So Gal(L/F ) forms a cone with morphisms πKi :

Gal(L/F )

Gal(Ki/F ) Gal(Kj/F )

πKi
πKj

projKi/Kj

We then have to work to show that this cone is universal. However, the faster route is to simply
recognize that we can index G(L/F ) in a monotonic way, since it is a partially order set. Thus
there exists a partially ordered set J such that if f : i j exists in J , then

F (i) = Gal(Ki/F ) F (j) = Gal(Kj/F ) =⇒ F (f) : Gal(Ki/F ) Gal(Kj/F )

Thus we have a functor F : J G(L/F ) which hits every Galois group Gal(K/F ) in such
a way that it preserves the order in G(L/F ). Since the limit of every small diagram exists in
Grp, we can define Gal(L/F ) to be the inverse limit of this functor, and we already know
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that the limit will have the form

Gal(L/F ) =


(· · · , σk, · · · ) ∈

∏

K∈F(L/F )
Gal(K/F ) | projKi/Kj ◦πKi = πKj



 .

and that it will be universal. So, this is how we extend the definition of Galois group from a
finite, normal, separable extension to simple a normal, separable extension.

This construction can be done more generally on a partially ordered system of groups, to create
these things called profinite groups.
Definition 5.2.5. Suppose we are given a partially ordered set of finite groups Gi, indexed by
some set I, equipped with morphisms {f ji : Gj Gi | i, j ∈ I i ≤ j} such that

1. f ii : Gi Gi is the identity idGi
2. f ji ◦ fkj = fki .

Then we define the profinite group G of this system to be the inverse limit:

G =
{

(gi)i∈I ∈
∏

i∈I
Gi | f ji (gi) = gj

}
.

Note that requiring f ji (gi) = gj is the same as requiring f ji ◦ πi(x) = πj(x), where x ∈ G, which
is how we defined Gal(L/F ).

Thus in the previous example, we have that not only can we actually define Gal(L/F ), but
our construction leads to it to becoming a profinite group. Profinite groups are actually very
special, in that they can be interpreted topologically.
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5.3 Limits from Products, Equalizers, and Pullbacks.

In our construction of limits for Sets, we basically forced the existence of a cone, because we
could. This is usually the general strategy when it comes to calculating the limit of a diagram
in a given category; one uses available, useful constructions which are already present inside
of a category. For example; in Set, we used the fact that it is cartesian closed to formulate
infinite products.

Since the general strategy for showing Set is complete can be extended to other categories,
one may wonder "well, why? And when will I no longer be able to apply this strategy?" The
theorem below answers this question.

Theorem 5.3.1. Let C be a category and J a small category. Suppose C has equalizers
for every pair of morphisms in C, and all products indexed by objects of J and morphisms
of J . Then every functor F : J C has a limit in C.

What do we mean by all products "indexed by objects of J and morphisms of J"? What we
want to do is be able to create products of the form

∏

j∈J
Fj

∏

u:i k

Fcod(u) =
∏

u:j k

Fk.

and know that they’re in C. The product on the far left is indexed by objects of J , while the
equal ones on the right are indexed by morphisms u : i k in J . It’s a bit weird to think of
a product "indexed by morphisms," but it’s exactly what it sounds like: we index over all the
morphisms, and take the product of the domain or codomain (in the above, we did codomain).

Why do we need this weird concept? To answer this, let’s go over the construction of limits
in Set in a bit different way.

When we had a diagram F : J C in C, our first guess in constructing the limit was
designing the

∏

j

Fj with morphisms πi :
∏

j

Fj Fi. However, this doesn’t actually form a

cone, since for each u : j k, we can’t guarantee

F (u) ◦ πj = πk

That is, we can’t guarantee the diagram

∏

j∈J
Fj

Fk Fk

πkπj

u
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will commute, which is what we need for a cone. Since we needed F (u) ◦ πj = πk, we forced it.
But this forcing is simply realizing that, all x ∈

∏

j∈J
Fj which satisfy F (u) ◦ πj = πk, are simply

members of the equalizer of F (u) ◦ πj and πk.

Proof. Consider the products
∏

j∈J
Fj and

∏

u:i k

Fk where in the last product we index over

all morphisms in J . With both products, consider the projection morphisms

π′j :
∏

u:i k

Fk Fj

πj :
∏

i∈J
Fi Fj.

Note that because we have products, we have universal properties which we can take advantage
of. That is, the following diagrams must commute for some f and g.

∏

i∈J
Fi

Fk
∏

u:j k

Fk

πk
f

π′k

∏

i∈J
Fi

∏

u:i k

Fk

Fi Fk

g

πi π′k

F (u)

Note however that we can stack these diagrams on top of each other, to obtain

Fk

∏

i∈J
Fi

∏

u:i k

Fk

Fi Fk

f

g

πk

πi π′k

π′k

F (u)

Since we have equalizers for every pair of arrows, we can form the equalizer e : D
∏

i∈J
Fi

of both f and g for some object D.

D
∏

i∈J
Fi

∏

u:i k

Fk
e

f

g

Now that we have a morphism e : D
∏

i∈J
Fi, we can compose this with projections

∏

i∈J
Fi

Fi to produce a family of morphisms πi ◦ e : D Fi. If we like, we can even add this to our
diagram above to get the following:
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Fk

D
∏

i∈J
Fi

∏

u:i k

Fk

Fi Fk

e

µi

f

g

πk

πi π′k

π′k

F (u)

(It looks like a boat!) Denote µi = πi ◦ e : D Fi. Then what the above boat diagram tells
us is that

π′k ◦ g = πk F (u) ◦ πi = π′k ◦ f.
Composing both equations with e, we get

π′k ◦ g ◦ e = πk ◦ e F (u) ◦ πi ◦ e = π′k ◦ f ◦ e.

but since g ◦ e = f ◦ e, what this really tells us is that

F (u) ◦ πi ◦ e = πk ◦ e =⇒ F (u) ◦ µi = µk.

for every u : i k in J . Therefore, we see that we have that

D

Fi Fk

µi µj

F (u)

commutes, so that D equipped with the morphisms µi : D Fi forms a cone. We now show
that this is universal, so that D is our limit. We do this by taking advantage of the universal
property which equalizers posses.

Suppose C is another object which forms a cone with morphisms τi : C Fi. Then there
exists a map e′ : C

∏

i∈J
Fi such that π ◦ e′ = τi. Moreover, this implies that f ◦ e = g ◦ e.

But the universal property of the equalizer e states that for any subject object, there exists
a morphism h : D C such that the diagram below commutes.

D
∏

i∈J
Fi

∏

u:i k

Fk

C Fi

e

h

f

g

πi
e′

τi
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Since h : D C is unique, this shows that D equipped with the morphisms µi : D Fi
forms a limit of the diagram, so that D = LimF . �

We actually proved much more than what was stated in the theorem, since we literally found
the explicit form the limit.

As a corollary, we have the following result which is due to the above theorem. The only
difference is we strengthen our hypothesis, which makes it less general.
Corollary 5.3.2. Let C be a category. If C has all equalizers (coequalizers) and finite products
(coproducts), then C has all finite limits (colimits).

By Proposition 3.3.8, one can obtain finite products by simply demanding the existence of
binary products and a terminal object. Hence we can restate the above corollary:
Corollary 5.3.3. Let C be a category. If C has all equalizers (coequalizers), binary products
(coproducts) and a terminal object, then C has all finite limits.

Not what is even more interesting is that we can construct equalizers and finite products
from pullbacks.

Specifically, suppose our category C has pullbacks and a terminal object T . For any pair of
objects A,B in C, suppose we take the pull back on the morphisms tA : A T and tB : B T .
This then give rise to an object P equipped with two morphisms p1 : P A and p2 : P B,
universal in the sense demonstrated below.

C

P A

B T

f

g

h
p1

p2 tA

tB

=⇒

C

B P A

fg
h

p2 p1

Now on the top left we have our pull back. However, on the top right, we’ve unraveled the
pullback and ignored the terminal object to observe that P has the universal property of what a
product would demand. Hence we may denote P = A×B as the product. Thus by Proposition
3.3.8 C has all finite products. Note that we wouldn’t have been able to construct this if we
didn’t have a terminal object; For example, if C was a discrete category, we wouldn’t even have
any morphisms to take a pullback on!

Now to derive equalizers, consider a pair of parallel morphisms f, g : A B. Then we may
simply take their pullback to obtain the diagram below.

C

P A

A B

f

g

h
p1

p2 f

g
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If p : A × A A is the natural projection map, then because we have a trivial mapping
1A : A A, there exists a canonical canonical map i : A A × A such that p ◦ i = 1A.
Similarly, because we have mappings p1, p2 : P B, we must have a mapping h : P A×A.

A

A A× A A

1A1A
i

p p

P

A A× A A

p1p2
h

p p

Now we can take the pullback on the morphism h : P A×A and i : A A×A to obtain
the equalizer.

C

E P

A A× A

f

g

h
p1

p2 h

i

Hence we see that for finite limits, we can reduce our assumptions to pullbacks and a
terminal object, giving rise to the final corollary.

Theorem 5.3.4. If a category has pullbacks and a terminal object, then it has all finite
limits.
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5.4 Preservation of Limits

Definition 5.4.1. Let F : J C be a diagram and suppose G : C D is a functor. If
for every limit LimF exists in C with morphisms ui : C Fi, we say G preserves limits if
G(LimF ) is a limit with morphisms G(ui) : G(C) G(Fi). Moreover, we call such a functor
a continuous functor.

As an immediate consequence of the definition, it should be noted that a composition of
continuous functors is continuous.

Below we see a visual definition of a continuous functor.

C

LimF

F (i) F (j)

h

fi fj

ui uj

F (g)

D

G(LimF )

G(F (i)) G(F (j))

h′

gi gj

G(ui) G(uj)

G(F (g))

There’s one particular and important functor which is always continuous in any category.

Theorem 5.4.2. Let C be a small category. Then for each C ∈ C, the functor

HomC(C,−) : C Set

preserves limits. (Dually, the functor HomC(−, C) = HomC(C,−) : Cop Set takes
colimits to limits.)

Proof. Let F : J C be a diagram with a limiting object Lim F equipped with the morphisms
σi : Lim F Fi. Then applying the HomC(C,−) functor to Lim F and to each ui, we realize
it forms a cone in Set.

Lim F

Fi Fj

σjσi

u

HomC(C,Lim F )

HomC(C,Fi) HomC(C,Fj)

σj∗σi∗

u∗

Now we show that HomC(C,Lim F ), equipped with the morphisms σi∗, is a universal cone;
that is, it is a limit. Suppose that X is a set which forms a cone with the morphisms
τi : X HomC(C,Fi).
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X

HomC(C,Fi) HomC(C,Fj)

τjτi

u∗

Then for each x ∈ X, we see that τi(x) : C Fi. The diagram above tells us that
u ◦ τi(x) = τj(x) for each x. Hence each x ∈ X induces a cone with apex C with morphisms
τi(x) : C Fi.

C

Fi Fj

τi(x) τj(x)

u

However, Lim F is the limit of F : J C. Therefore, there exists a unique arrow hx :
C Lim F such that hx ◦ σi = τi(x). Now we can uniquely define a function : X
HomC(C,Lim F ) where h(x) = hx : C Lim F , in such a way that the diagram below
commutes.

X

HomC(C,Lim F )

HomC(C,Fi) HomC(C,Fj)

h

τi τj

σi∗ σj∗

u∗

Therefore, HomC(C,Lim F ) is a limit in Set. �

At this point, you may be wondering: What is the difference between a functor which
"creates limits" and one which preserves them? We’ll see that their definitions are different, but
creating limits is the same as preserving them

Theorem 5.4.3. Suppose G : C D creates limits for F : J C. If G ◦F : J D
has a limit in D, then G is continuous.

Proof. Suppose F : J C has limit LimF in C with morphisms vi : LimF Fi for
each i ∈ J . Further, suppose G ◦ F : J D has a limit LimG ◦ F with morphisms
ui : LimG ◦ F G ◦ Fi.
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Since G : C D creates limits, this implies the existence of a limiting object X with
morphisms σi : X Fi for F : J C where G(X) = LimG ◦ F and G(σi) = ui. However,
limiting objects are unique (by their universal properties). As they must be isomorphic, there
exists an isomorphism ϕ : X LimF for which vi ◦ ϕ = σi. Thus we see that

G(LimF ) ∼= G(X) = LimG ◦ F G(vi ◦ ϕ) = G(σi) = ui.

Therefore, G preserves limits and so is continuous. �

We have the following as a corollary.
Corollary 5.4.4. Suppose G : C D creates limits and C is complete. Then D is complete
and G preserves limits.
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5.5 Adjoints on Limits

Consider the free monoid functor F and the forgetful functor U , as below. Recall that they
form an adjunction.

Set MonF

U

The way that we philosophically interpret this adjunction is as follows: For a set X, a monoid
homomorphism ϕ : F (X) M gives rise to a unique set function f : X U(M). Conversely,
a set function g : X U(M) gives rise to a unique monoid homomorphism ψ : F (X) M .

We will now observe that these functors exhibit nice behavior.

• Recall that products in Mon are simply products of monoids, while products in Set are
cartesian products. One can show that, for two monoids M , N , we have the isomorphism

U(M ×N) ∼= U(M)× U(N).

Regarding this functor’s behavior, we say that the forgetful functor U preserves products.

• We may ask if the converse holds: Does the free functor preserve products? The answer
is no: Given two sets X, Y , it is generally not true that F (X × Y ) ∼= F (X) × F (Y ) (as
monoids).

An easy way to see this is to let X = Y = {•}, the one point set. Then F ({•} × {•}) ∼=
F ({•}) ∼= Z, while F ({•})× F ({•}) ∼= Z× Z.

• What is interesting, however, is that the free functor does preserve coproducts. Recall
that the coproduct in Set is the disjoint union, while the coproduct in Mon is the free
product of monoids. Then it is true that, for two sets X, Y ,

F (X q Y ) ∼= F (X) ∗ F (Y ).

Thus we see that we have two functors that separately preserve products and coproducts. This
is actually very interesting; after all, a very useful question to ask about a functor is if it
preserves products, coproducts, equalizers, etc. For example, the fundamental group functor
preserves products, and this is an interesting result one usually proves a topology course.

We now explain why we have this nice behavior.

Theorem 5.5.1. Suppose G : D C is a right adjoint and F : C D is its left
adjoint. Then G preserves limits and F preserves colimits.

Before a proof, we make some comments.
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• An easy way to remember this is RAPL: “Right Adjoints Preserve Limits.” (Speaking
from experience, say it in your head a bunch of times or you’ll forget.) If you can remember
RAPL, then you can remember that, dually, left adjoints preserve colimits.

• The converse of this theorem does not hold.

• Typically, this proof is shown in one of two forms: It is “blackboxed” with a slick applica-
tion of the Yoneda Lemma, which is not illuminating or useful for a new reader. Or, it is
more usefully spelled out by showing that right adjoints preserve limits, and the second
statement is obtained by “dualizing”. For variety, we will show that left adjoints preserve
colimits. Then, the reader can try proving themselves that right adjoints preserve limits.

Proof. Let (ColimH, σi : H(i) ColimH) be the colimit of the functor H : J C. This
means that we have the universal diagram below.

A

ColimH

H(i) H(j)

γi γj

σi σj

H(f)

Mapping this to D under F : C D, we obtain the diagram

F (ColimH)

F (H(i)) F (H(j))

F (σi) F (σj)

F (H(f))

We see that (F (ColimH), F (σi) : F (H(i)) F (ColimH)) is a cone over the functor F ◦H :
J D. We must show it is universal. Towards that goal, let (C, τi : F (H(i)) C) be a
cone over F ◦H : J D. We must show that

1. There exists a α : F (ColimH) C such that α ◦ F (σi) = τi for all i ∈ J
2. α is the unique morphism from F (ColimH) to C with this property.

We show existence. Observe that each τi : F (H(i)) C induces a unique morphism δi :
H(i) G(C) such that the diagram below commutes.

F (G(C)) C

F (H(i))

εC

δi τi
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Hence, we have a family of δi : H(i) G(C). However, since ColimH is the colimit of H,
we obtain a unique morphism k : ColimH G(C) such that the diagram commutes.

G(C)

ColimH

H(i) H(j)

δi δj

k

σi σj

H(f)

We then map this diagram in C to the diagram below in D via F :

C

F (G(C))

F (ColimH)

H(i) H(j)

εC

F (k)

F (σi) F (σj)

F (H(f))

F (δi)

τi

F (δj)

τj

Thus we see that εC ◦ F (k) : F (ColimH) C is a morphism pointing from F (Colim) to C
such that the above diagram commutes. We have proved existence of such a morphism. It is
not difficult to show uniqueness, which is left as an exercise. Once we have uniqueness, we
can then conclude that (F (ColimH), F (σi) : F (H(i)) F (ColimH) forms a universal cone
over F ◦H : J D, so that F (ColimH) is the colimit, as desired. �

Example 5.5.2. Using the above theorem, we now know that the free monoid functor F :
Set Mon preserves coproducts. Therefore, we can say that for any sets X, Y , we have that

F (X q Y ) ∼= F (X) ∗ F (Y ).

Moreover, the free monoid functor is part of a larger family of free functors:

• Free group functor, F : Set Grp

• Free abelian group functor, F : Set Ab
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• Free ring functor, F : Set Ring

• Free R-module functor, F : Set R-Mod

who are the left adjoints to their respective forgetful functors. However, the coproduct in some
of these categories is not always the free product. For example, the coproduct of Grp is the
free product, but the coproduct in Ab is the direct sum. Hence, the above theorem tells us
that coproducts are preserved, but to obtain the correct isomorphism, we need to remember
what the coproduct in the codomain category of our left adjoint is.

Example 5.5.3. Let Meas be the category of measure spaces with measure-preserving mor-
phisms. More precisely,
Objects. The objects are triples (X,A, µX) where X is a topological space, A is a sigma

algebra on X, and µX is a measure on X.
Morphisms. A morphism between two objects (X,A, µX) and (Y,B, µY ) is a function f :

X Y such that f is measurable and preserves measure. That is, is f is measurable
and

µX(f−1(B)) = µY (B)

for every B ∈ B.
Let U : Meas Set be the forgetful functor, forgetting measure space properties and

measurability of the morphisms. This functor can’t have a left-adjoint, since it does not preserve
products. In fact, Meas cannot even have products. The main issue with this is that we cannot
guarantee the projection morphisms to preserve measure. For example, if we consider the simple
measure space (R,B, µ) where B consists of the Borel algebra and µ is the Lebesgue measure,
then one reasonable way to try to form a product with itself is to construct the triple

(R× R,B × B, µ× µ).

However, observe that the projection π : (R × R,B × B, µ × µ) (R,B, µ) is not measure
preserving:

µ× µ(π−1([0, 1])) = µ× µ([0, 1]× R) =∞
while

µ([0, 1]) = 0.

Therefore, we cannot form products. Hence our forgetful functor has no left adjoint.
One could guess that the left adjoint would be the measure-constructing functor F : Set

Meas where
X 7! (X,P , µ0)

where P is the sigma algebra on the power set, and µ0 assigns the measure of each set to zero
(i.e. the trivial measure) but this is not the case. In fact, this functor itself also cannot have a
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left-adjoint because it doesn’t preserve products (since Meas can’t have products).

Exercises

1. Denote the free monoid functor as F . Prove directly that for two sets X, Y , we have
the isomorphism of monoids F (X q Y ) ∼= F (X) ∗ F (Y ). (Doing this is actually very
important; The proof of Theorem 5.5.1 will become more intuitive.)

2. Finish the proof of Theorem 5.5.1

3. Let C,D be categories with finite products.

i. Let F : C D be a functor that preserves products, so that for two objects A, B
of C, there exists an isomorphism

F (A×B) ∼= F (A)× F (B).

Does this isomorphism have to be natural in A,B?

ii. Suppose F : C D is a right adjoint. Is the isomorphism F (A×B) ∼= F (A)×F (B)
natural now?
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5.6 Existence of Universal Morphisms and Adjoint
Functors

When we introduced functors, we introduced several if and only if propositions which gave us
criterion on the existence of an adjoint functor. Notably, we showed that if there exists an
adjunction

C D
G

F

(that is, the classic bijection of homsets which is natural) then there exist universal morphisms

ηC : C G ◦ F (C) εD : F ◦G(D) D

for all objects C,D. Furthermore, we only need one of the universal morphisms to derive an
adjunction. Since universal morphisms are simply initial objects in some comma category, we
have the following proposition.
Proposition 5.6.1. Let G : D C be a functor. Then G has a left adjoint if and only if for
each C ∈ C, the comma category C # G has an initial object.

Proof.

=⇒ Suppose G has a left adjoint F : C D. Then for each C ∈ C, there exists a universal
morphism ηC : C G(F (C)). Now in the comma category, objects will be of the form

(D, f : C G(D))

where morphisms between (D, f : C G(D)) and (D′, f ′ : C G(D′)) will be induced
by morphisms h : D D′ such that

C

G(D) G(D′)

f f ′

G(h)

commutes. First, observe that (F (C), ηC : C G(F (C))) is an object of the comma
category. Second, observe that the bijection of homsets

HomD(F (C), D) ∼= HomC(C,G(D))

(natural in C,D) guarantees that every object (D, f : C G(D)) in the comma
category corresponds uniquely to a morphism h : F (C) D. Moreover, uniqueness
guarantees that the diagram
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C

G(F (C)) G(D)

ηC f

G(h)

must commute. Hence, (F (C), ηC : C G(F (C))) is an initial object C # G.

⇐= Now suppose that C # G has an initial object (D, ηC : C G(D)). Actually, denote
the object D as F (C). When we write F (C), we’re not denoting a functor, because
we’ll show this is a functor. Anyways, our initial object can be written as

(F (C), ηC : C G(F (C))).

This defines a mapping on objects C 7! F (C). To show that this is a functor, suppose
we have a morphism f : C C ′ in C. Then we have square

C G(F (C))

C ′ G(F (C ′)).

ηC

f

ηC′

Adding the final leg to this diagram would show that F is a functor. But since
(F (C), ηC : C G(F (C))) is an initial object in (C # G), and (F (C ′), ηC′ :
C ′ G(F (C))) is an object in this category, there must be a unique morphism
F (f) : F (C) F (C ′). Uniqueness of this morphism forces commutativity of the
square

C G(F (C))

C ′ G(F (C ′)).

ηC

f G(F (f))

ηC′

and therefore F is a functor. Simultaneously, this shows F is left adjoint to G, as
desired.

�

We can repeat the proof to achieve the following result as well.
Corollary 5.6.2. Let F : C D be a functor. Then F has a right adjoint if and only if for
each D ∈ D, the comma category D # F has a terminal object.
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Thus we see that initial and terminal objects are key to figuring out when a functor has a
left or right adjoint, and hence when they preserve limits. We can investigate a little deeper
into this.
Lemma 5.6.3. (Initial Object Existence.) If C is a complete category with small homsets, then
C has an initial object if and only if it satisfies the Solution Set Condition:

There exists objects (Ci)i∈I ∈ C such that for every C ∈ C, there is a a morphism
fi : Ci C for at least one i ∈ I.

Proof.

=⇒ Suppose C has an initial object C ′. Then I is the one-point set since for each C ∈ C
there exists one unique morphism f : C ′ C.

⇐= On the other hand, assume the solution set condition. Since C is complete, it must have
products, so we may take the product

W =
∏

i∈J
Ci.

This product has associated projection morphisms πk :
∏

i∈J
Ci Ck. Therefore, for each

object C ∈ C, there exists at least one morphism between W and C by composition:

fk ◦ πk : W C.

By hypothesis, the collection of endomorphisms HomC(W,W ) is a set. Therefore, we
may form an equalizer e : V W of this set. Observe that for each C ∈ C, there exists
at least one morphism between V and C by composition:

fk ◦ πk ◦ e : V C.

We’ll now show that all morphisms are equal. Suppose the contrary; that there are two
distinct morphisms f, g : V C. Denote the equalizer of this pair as e1 : u v.
Then we have that

U V C

W W = ∏
i∈J Ci Ck

e1 f

es

e◦e1◦s πk

fi

commutes. The morphism s is induced via the universality of both U and V . Since
e ◦ e1 ◦ s : W W , and e is the equalizer of endomorphisms of W , we have that

(e ◦ e1 ◦ s) ◦ e = e.
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Since equalizers are monic, we can cancel on the left side to conclude that

e1 ◦ s ◦ e = 1V .

However, this implies that the right inverse of e1 is s ◦ e. Since e1 is already monic, it
must be an isomorphism. Hence f = g, so that V is an initial object as desired.

�

We can now combine all of our propositions and theorems into the following one, which is
the main adjoint functor theorem of interest.

Theorem 5.6.4. (General Adjoint Functor Theorem.) Let D be complete with
small homsets. A functor G : D C has a left adjoint if and only if it preserves all small
limits and satisfies the solution set condition:

For each C ∈ C, there exists a set of objects (Di)i∈I D and a family of arrows

fi : C G(Di)

such that for every morphism h : C G(D), there exists a j ∈ I and a
morphism t : Dj D such that

h = G(t) ◦ fi.

The above theorem helps us find out when we can get a left adjoint. Prior to this theorem,
we already know what happened if we were given a functor who has a left adjoint. Namely, it
must preserve limits. This natural question one would then ask is if the converse holds. The
above theorem tells us no, the converse doesn’t hold and in fact we need to make sure the
functor satisfies the solution set condition. In the next section, we’ll give an example of a
functor which preserves limits from a complete category, but still has no left adjoint.

As a converse to the above theorem, we have the following.

Theorem 5.6.5. (Representability Theorem.) Let C be a small, complete
category. A functor K : C Set is representable if and only if K preserves limits and
satisfies the following solution set condition:

There exists a set S ⊆ Ob(C) such that for any C ∈ C and any x ∈ K(C), there
exists an s ∈ S, an element y ∈ K(s) and an arrow

f : s C such that K(f)(y) = x.
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5.7 Subobjects and Quotient Objects

The entire point of category theory, contrary to its name, is to unify mathematics. Mathemati-
cians saw the same stories over and over again in algebra and topology, and one day they got
sick of it and decided to start naming the patterns they were seeing. Mathematicians achieved
a level of abstraction where we no longer really care about the objects, but we want to study
the morphisms between them. However, in many categories, the objects are often things like
groups, rings, or topological spaces; hence there are subgroups, subrings, and spaces with subset
topologies which also exist inside categories we study. This presents a challenge for category
theory: how do we generalize the notion of subgroups or subspaces if we always avoid explicit
reference to the elements?

It turns out that the correct way to go about this is to consider the philosophy of sub-
"things": whenever S is a sub-"thing" of X, there usually exists a monomorphism

m : S X.

For example, in Set, S ⊆ X implies that there’s an injection i : S X; a monomorphism is
injective in Set, so this makes sense. In Top, if S ⊆ X where S is given the subspace topology,
then the inclusion function i : S X is continuous, so there does exist a monomorphism
m : S X in Top.

Thus we see that these monomorphisms give us sub-"things," and so we might naively say
the set of all "subobjects" of an object X in a category C is the set

SubC(X) = {S ∈ Ob(C) | ∃f : S X with f monic }.

However, the space of all of these monomorphisms is huge, and also repetitive. For example,
in Set, if we have X = {1, 2, 3, 4, 5}, then there are all kinds of monomorphisms into X:

{! , % , $ ,& }

{Q,G,X, I} {1, 2, 3, 4, 5}

{All , Politicians , Are , Corrupt }

Each arrow is basically saying the same thing. How do we deal with this? Well, we can impose
an equivalence relation on this space to obtain something smaller and more manageable.

Let A an object of our category C. Consider monomorphisms f : C A and g : D A.
Define the relation ≤ on monomorphisms of this form where
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f ≤ g if there exists an h where f = g ◦ h.

C

A

D

f

g

h

for some monomorphism h : D′ D. Note that if f ≤ g and f ≥ g, then C and D are
isomorphic (this is not true in general; this only true here because f, g are monomorphisms). So
we now have our equivalence relation: we say f ∼ g if there exists an isomorphism ϕ : D C

which makes the above diagram commute.
Definition 5.7.1. Let C be a category and let A be an object. We say a subobject of A is an
equivalence class of monomorphisms f : S A under the equivalence relation ∼. We denote
this space of equivalence classes as

SubC(A) =
{

[f ] | f : C A is a monomorphism
}
.

Example 5.7.2. Let C be a category. An interesting application of subobjects occurs in functor
categories. To illustrate this we consider the functor category SetC; that is, the category with
functors F : C Set whose morphisms are natural transformation η : F G between such
functors.

If we play around with these functors long enough, we may ask the question: What happens
when, for a functor F : C Set, there is another functor G : C Set such that

G(A) ⊆ F (A)?

Could we logically call G a "subfunctor" of F? We could with a little more work. Because
G(A) ⊆ F (A), we know that there exists a monomorphism (just an injection here) iA : G(A)
F (A). Now a natural question to ask here is if this translates to a natural transformation. That
is, does the diagram below commute?

A

B

f

G(A) F (A)

G(B) F (B)

G(f)

iA

F (f)

iB

The answer is no. This is because G(f) and F (f) could be two entirely different functions
which do two entirely different things to the same elements in different domains; however, one
way for this diagram to commute is if G(f) is F (f) restricted to the set G(A). That is, if

G(f) = F (f)
∣∣∣
G(A)

.
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The diagram then commutes. But is this the only way to make it commute? Suppose with
no assumption of G(f) that the diagram did commute. Then we can still make a morphism
F (f)

∣∣∣
G(A)

: G(A) G(B) to get the commutative diagram

A

B

f

G(A) F (A)

G(B) F (B)

G(f)F (f)
∣∣∣
G(A)

iA

F (f)

iB

Then we see that iB ◦ G(f) = iB ◦ F (f)
∣∣∣
G(A)

. However, iB is a monomorphism, so G(f) =

F (f)
∣∣∣
G(A)

. Hence the only way to make the diagram commute is if G(f) is a restriction of
F (f).

Thus we could define G : C Set to be a subfunctor of F : C Set if G(A) ⊆ F (A) and
G(f : A B) = F (f)

∣∣∣
G(A)

. Or, equivalently, if G(A) ⊆ F (A) and that this relation is natural.
However, we can recover the same concept by applying subobjects to this functor category.

In this case, we can (with laziness) say a G : C Set is a subobject of the functor F : C Set
in SetC if there exists a monic natural transformation η : G F .

Unwrapping this definition, we see that a monic natural transformation in this case is just
one where each morphism ηA : G(A) F (A) is a monomorphism, which, in our case, just means
an inclusion function, such that the necessary square commutes. However, we already showed
that we get the commutativity of the necessary square if and only if G(f : A B) = F (f)

∣∣∣
G(A)

.
Hence we have recovered the same concept of a subfunctor in two different ones; one in

which we followed our intuition, and one in which we blinded applied the concept of a subobject
in the functor category SetC.

The previous example allows us to make the definition:
Definition 5.7.3. Let C,D be categories. Then a functor G : C D is a subfunctor of
F : D C if G is a subobject of F in the functor category DC.

Now, perhaps unsurprisingly, the entire process above can be dualized. When we dualize,
however, we obtain a generalization of the concept of quotient objects. Instead of just dualizing
and being boring, we’ll motivate why we’d even care for such a dual concept.

In interesting categories such as Ab or Top, we not only have subgroups and subspaces,
but we also have quotient groups and quotient spaces. For the case of abelian groups, we can,
for any such group G, consider any subgroup H ≤ G and construct the quotient group G/H.
This comes with a a nice epimorphism π : G G/H where g 7! g +H.

For topological spaces (X, τ) in Top, we can define an equivalence relation ∼ on X and
consider the topological space (X/ ∼, τ ′) such that τ ′ is the topology where a set U is open
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if {x | [x] ∈ U} is open in τ . We can then equip ourselves with a continuous projection map
π : X X/ ∼, which is also an epimorphism.

With these few examples, we see that it is worthwhile to generalize the concept of quotient
objects; to do this however requires no explicit mention of the elements of the objects of the
category. However, we can maintain the philosophy seen in the previous two examples to
generalize the concept.

For an object A in a category C, we consider all epimorphisms

e : A Q

and call objects such objects Q as quotient objects. Again, the space of these objects is too
large, so we instead consider ordering relation

f ≤ g if there exists an h where f = h ◦ g.

C

A

D

f

g

h

Observing that f ≤ g and g ≤ f together imply that C ∼= D, we see that we may construct
an equivalence relation ∼ where f ∼ g if there exists an isomorphism ϕ : D C such that
f = ϕ ◦ g. We can now outline a clear definition.
Definition 5.7.4. Let C be a category and let A be an object. We say a quotient object of
A is an equivalence class of morphisms f : A Q. We then denote

QuotC(A) =
{

[f ] | f : A Q is an epimorphism
}
.

Example 5.7.5. A quotient object in Cat is a quotient category (from chapter 2)
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Zp

Z Z/pZ Z/p2Z Z/p3Z · · ·

π0 π1 π2
π3

f0 f1 f2 f3

HomMon(F (X),M) ∼= HomSet(X,U(M)

Gal(L/F ) =




(· · · ,σk, · · · ) ∈

∏

K∈F(L/F )
Gal(K/F ) | projKi/Kj ◦ πKi

= πKj





Gal(L/F )

Gal(Ki/F ) Gal(Kj/F )

πKi
πKj

projKi/Kj

Fk

D
∏

i∈J
Fi

∏

u:i→k

Fk

Fi Fk

e

µi

f

g

πk

πi π′
k

π′
k

F (u)

6. Filtered Colimits, Coends, and Kan Extensions

6.1 Filtered Categories and Limits

Outside of category theory, the most common types of limits that are taken in areas such as
algebraic geometry and topology are inverse and directed limits. These are limits which are
taken over thin categories (or preorders) which have at most one morphism between any two
morphisms.

As we shall see, limits over thin categories do not possess the nice properties that limits
taken over filtered categories have, which we will see is the categorification of the notion of a
directed set. We will motivate our desire to work with filtered categories instead of just thin
categories by observing an analogous motivation to work with directed sets instead of N in
sequences within topology. The picture in mind should be:

preorders directed sets

thin categories filtered categories

N directed sets

sequences nets

On the left, we see that thin and filtered categories are the categorification of concepts which
we will use to take limits over. On the right, we have topology concepts of sequences and nets,

which are limits taken over different sets.

Let X be a topological space. Recall that a sequence {an}∞n=1 in X is a function a : N X

such that a(n) = an. We say the sequence converges to a point x ∈ X if for every open set U
of x there exists a N ∈ N such that {aN , aN+1, . . . , } ⊆ U .

Some of the first topological spaces that people worked with were metric spaces (X, d), and
the properties of these spaces were worked out over time. People eventually figured out that



234 Chapter 6. Filtered Colimits, Coends, and Kan Extensions

• A subset F ⊆ X is closed if and only if F contains the limits of every sequence in F .

• A subset U ⊆ X is open if and only if U contains does not contain the limit of any
sequence in X − U .

This is a wonderful result! However, it does not generalize to arbitrary topological spaces.
There are weird counterexamples that we will not get into (cite An Introduction to Topology
and Homotopy Theory by Sierdaski).

What this means is that sequences over a plain preorder (i.e., N) are great, and they have
nice properties, but they lack the ability to extend their nice properties to arbitrary topological
spaces. We need more if we want it to work over arbitrary spaces.

This is where a directed set comes in.
Definition 6.1.1. A directed set D is a set equipped with a binary relation ≤ such that for
all a, b, c ∈ D,
1. a ≤ a (Reflexive).
2. if a ≤ b and b ≤ c, then a ≤ c (Transitive)
3. For all a, b ∈ D, there exists a c ∈ C such that a ≤ c and b ≤ c (Directed).
The first two properties describe a preorder; only the last condition is new to us. To summarize,
the “directed” axiom grants us an upper bounded in D for any finite set of elements of D.

Let D be a directed set. Define a net, or Moore-Smtih Sequence, to be a function
λ : D X. We say a net λ converges to a point x ∈ X if for every open set U containing x,
there exists a d ∈ D such that {λ(c) | c ≥ d} ⊆ U .

Directed sets are then enough to give us the following theorem:

Theorem 6.1.2. Let X be a topological space.

• A subset F ⊆ X is closed if and only if every convergent net λ : D X has a limit in F

• A subset U ⊆ X is open if and only if every convergent net λ : D X − U does not
have a limit in U .

Hence we see that limits taken over preorders have substantial benefits than when they are
simply taken over N. Similarly, what we will see is that limits taken over filtered categories
enjoy much better properties than limits simply taken over preorders. First, we introduce
filtered categories.
Definition 6.1.3. We say that a category J is filtered if

1. For any pair of objects j, j′, there exists an object k and morphism u : j k and
v : j′ k.

2. For any pair of parallel morphism u, v : i j, there exists an object k and a morphism
w : j k such that the diagram below commutes.

We do not say the empty category is filtered; this should be obvious, but it also needs to be
said.
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j

k

j′

u

v

j

i k

j

wu

v w

Conditions (1) and (2) illustrated.

Example 6.1.4. Let J be a thin category. What does it take for J to be filtered? Well, in
a thin category, there is never any pair of distinct morphisms. Hence condition (2) is trivial.
Therefore, for J to be filtered, we simply need to satisfy (1). But in the language of thin
categories, condition (1) can be read as “for any j, j ∈ J , there exists a k such that j, j′ ≤ k”.
Such a condition holds if and only if

every finite subset S ⊆ J has an upper bound in J .

Thus, a thin category J needs to have the above property in order to be a filtered category.
An example of this concerns the category Open(X), where X is a topological space. The

objects are open sets, while morphisms are inclusions. The maximal element X ∈ Open(X)
always exists, and hence makes this thin category filtered.
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(σM ,P )n :
⊕

i+j=n

Mi ⊗ Pj →
⊕

i+j=n

Pj ⊗Mi

(m⊗ p) 7−→ kijp⊗m

⊗ =

w
(n)
A

v′A

vA wA

v′′A

A×B A⊗B

G

ϕ

f
hA⊗B

A⊗ (I ⊗B)

(A⊗ I)⊗ (I ⊗ (I ⊗B))

1A⊗λb

ρA⊗λI⊗B

I ⊗A A A⊗ I

I ⊗B B B ⊗ I

λA

1I⊗f f

ρA

f⊗1I

λB
ρB

A⊗ (B ⊗C) (A⊗B)⊗C

A′ ⊗ (B′ ⊗C ′) (A′ ⊗B′)⊗C ′

αA,B,C

f⊗(g⊗h) (f⊗g)⊗h

αA′,B′,C′7. Monoidal Categories

7.1 Monoidal Categories

The concept of a monoidal category is motivated by the very simple observation that some
categories are canonically equipped with their own algebraic data which allows us to multiply
objects of the category to get new objects. This is similar to how in a group G, we multiply two
group elements g, h to get another group element gh ∈ G. These types of categories appear
frequently enough in many settings that it has been necessary to really understand what the
core ingredients of these categories are. The task of defining these categories, however, takes
a bit of work. Before we offer the definition and discuss such work we motivate monoidal
categories with two key examples.

Example 7.1.1. Consider the category Set. Then for two sets A, B, we can take their
cartesian product to create a third set

A×B = {(a, b) | a ∈ A, b ∈ B}.

We also know that given three sets A,B,C, we have an isomorphism A×(B×C) ∼= (A×B)×C.
The bijection is given by the function

αA,B,C : A× (B × C) −!∼ (A×B)× C (a, (b, c)) 7! ((a, b), c).

In addition, there is a particularly special set {•}, the one element set. For this set, we know
that {•} × A ∼= A× {•} ∼= A. The bijections are given by

λA : {•} × A −!∼ A (•, a) 7! a

ρA : A× {•} −!∼ A (a, •) 7! a
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A final observation that is easy to check is that our morphisms αA,B,C , λA, and ρA are
natural. Naturality for α means that for any three functions f : A A′, g : B B′,
h : C C ′, the diagram below commutes

A× (B × C) (A×B)× C

A′ × (B′ × C ′) (A′ ×B′)× C ′

αA,B,C

f×(g×h) (f×g)×h

αA′,B′,C′

while naturality for λ and ρ means that for any function f : A A′, the diagrams below
commute.

{•} × A A

{•} × A′ A′

λA

1×f f

λA′

A× {•} A

A′ × {•} A′

ρA

f×1 f

ρA′

(Here, 1 denotes the identity 1 : {•} {•}). While being able to find the functions α, ρ, λ
and observing that they are natural may not be surprising in Set, what is surpising is that this
behavior continues in many other categories.

Example 7.1.2. Let k be a field, and consider the category Vectk of vector spaces over k. For
two vector spaces U , V , we may take their tensor product to create a third vector space over
k. There are many ways to describe U ⊗ V ; here is one of them:

U ⊗ V =




u⊗ v

∣∣∣∣∣∣∣∣∣
u ∈ U, v ∈ V such that

1. (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v
2. u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2

3. c(u⊗ v) = (cu)⊗ v = u⊗ (cv), c ∈ k





Moreover, if U , V have bases {ei}i∈I , {fj}j∈J , then the basis of U ⊗ V is {ei ⊗ fj}(i,j)∈I×J .
From linear algebra, we know that U ⊗ (V ⊗W ) ∼= (U ⊗ V ) ⊗W . To show this, we will

define an isomorphic linear transformation U ⊗ (V ⊗W ) (U ⊗V )⊗W . However, recall that
to define such a linear transformation, it suffices to define it on the basis. Thus, let W have
basis {g`}`∈L. Then we define

αU,V,W : U ⊗ (V ⊗W ) −!∼ (U ⊗ V )⊗W

where on the basis elements

αU,V,W (ei ⊗ (fj ⊗ g`)) = (ei ⊗ fj)⊗ g`.
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This establishes our desired isomorphism.
In addition, the field k is trivially a vector space over itself; its basis is the multiplicative

identity 1. Moreover, we have the isomorphisms k ⊗ V ∼= V ⊗ k ∼= V . The isomorphisms are
given by the linear transformations

λV : k ⊗ V −!∼ V 1⊗ ei 7! ei

ρV : V ⊗ k −!∼ V ei ⊗ 1 7! ei

Here, we’ve defined the two transformations on the bases.
Similarly to our last example, we comment that α, λ, ρ defined here are natural. This means

that for any three linear transformations f : U U ′, g : V V ′, and h : W W ′, the
diagram below commutes

U ⊗ (V ⊗W ) (U ⊗ V )⊗W

U ′ ⊗ (V ′ ⊗W ′) (U ′ ⊗ V ′)⊗W ′

αU,V,W

f⊗(g⊗h) (f⊗g)⊗h

αU′,V ′,W ′

and we additionally have that the diagrams below commute.

k ⊗ U U

k ⊗ U ′ U ′

λU

1⊗f f

λU′

U ⊗ k U

U ′ ⊗ k U ′

ρU

f⊗1 f

ρU′

The observations we have made here continue to be true upon investigating many other
categories C in which we have some known, natural way of combining elements. In each case,
the story is the same. The key ingredients are:

• There is some product ⊗ : C × C C (specifically, it is a bifunctor)

• For all A,B,C ∈ C, there is a natural isomorphism

αA,B,C : A⊗ (B ⊗ C) −!∼ (A⊗B)⊗ C

• There is a special object I of C such that, for any object A, we have the natural isomor-
phisms

λA : I ⊗ A −!∼ A ρA : A⊗ I −!∼ A

The fact that we keep seeing these patterns in many categories is what motivates the fol-
lowing definition.
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Definition 7.1.3. A monoidal category C = (C,⊗, I) is a category C equipped with a bi-
functor ⊗ : C × C C, a (special) object I, and three natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) −!∼ (A⊗B)⊗ C (Associator)
λA : I ⊗ A −!∼ A (Left Unit)
ρA : A⊗ I −!∼ A (Right Unit)

such that the following coherence conditions hold.

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

1A⊗λB ρA⊗1B
(7.1)

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

1A⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗1D

(7.2)

We also define some terminology within this definition.

• We call the bifunctor ⊗ the monoidal product

• We refer to I as the identity object

• We refer to diagram 7.1 as the unit diagram and diagram 7.2 as the pentagon diagram.

Further, we say a strict monoidal category is one in which the associator, left unit and right
unit are all identities.

The reader should be wondering: What are those “coherence conditions”? The short answer
is that we need the coherence conditions in order for our ideas to make any logical sense. While
that answer is very vague and unsatisfying, we are not quite yet ready to fully explain why
those two diagrams are necessary. We will however say

• The reader is definitely not expected at this moment to understand why those diagrams
are necessary.

• We will eventually explain why those diagrams are necessary.

Before we explain why the diagrams are necessary, we develop further intuition regarding
monoidal categories with some more examples.
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Example 7.1.4. As one might expect, (Set,×, {•}) is a monoidal category. We have verified
most of the details except the coherence conditions, but it is not too difficult to show that the
unit and pentagon diagram commute in Set.

However, we can put another monoidal category structure on Set with the following data:

• We let the disjoint union bifunctor (−)∐(−) : Set×Set Set be our monoidal product.

• We let the empty set ∅ be our identity object.

With these settings, we can define natural isomorphisms for any three sets X, Y, Z

• αX,Y,Z : X q (Y q Z) −!∼ (X q Y )q Z
• λX : ∅qX −!∼ X

• ρX : X q∅ −!∼ X

in the obvious way, and check that the required diagrams commute. In this way, we have that
(Set,q,∅) is also a monoidal category.

The previous example demonstrates that a given category can have more than one monoidal
structure on it. This is analagous to the fact that sometimes one can put two different group
structures on an underlying set.

The previous example may also make us wonder if we can generalize our logic to consider
other categories in which finite products and coproducts exist. The answer is yes, and this gives
us many examples of monoidal categories:

• (Top,×, {•})
• (Ab,⊕, {e})
• (R-Mod,×, {0})

Proposition 7.1.5. If C is a category with finite products and a terminal object T , then
(C,×, T ) is a monoiodal category. We refer to this type of monoidal category as a cartesian
monoidal category.

Dually, if it has finite coproducts and an initial object I, then (C,q, I) is also a monoidal
category. We call this type of monoidal category a cocartesian monoidal category.

We now introduce less obvious, but useful examples of monoidal categories.

Example 7.1.6. Let R be a commutative ring. Then the category of all R-modules, (R-Mod,
⊗, {0}), forms a monoidal category under the tensor product. Recall that the tensor product
between two R-modules N ⊗M is an initial object in the comma category (N ×M # R-Mod
where the morphisms are bilinear. Alternatively in diagrams, we have that
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M ×N M ⊗N

K

ϕ

f
h

Now consider a third R-module P ; then we have two ways of constructing the tensor product.
To demonstrate that we may identify these objects up to isomorphism, construct the maps

f : (M ⊗N)× P M ⊗ (N ⊗ P )
(∑

i

mi ⊗ ni, p
)
7!
∑

i

mi ⊗ (ni ⊗ p)

and

f ′ : M × (N ⊗ P ) (M ⊗M)⊗ P

m,

∑

j

nj ⊗ pj

 7!

∑

j

(m⊗ nj)⊗ pj.

These maps are bilinear due to the bilinearity of ⊗. Hence we see that the universal property
of the tensor product gives us unique map α and α′ such that the diagrams below commute.

(M ⊗N)× P (M ⊗N)⊗ P

M ⊗ (N ⊗ P )

ϕ

f
α

M ⊗ (N × P ) M ⊗ (N ⊗ P )

(M ⊗N)⊗ P

ϕ′

f ′
α′

Based on how we defined f and f ′, and since we know that ϕ and ϕ′ is, we can determine that
α and α′ are "shift maps", i.e,

α

(∑

i

(mi ⊗ ni)⊗ pi
)

=
∑

i

mi ⊗ (ni ⊗ pi) α′
(∑

i

mi ⊗ (ni ⊗ pi)
)

=
∑

i

(mi ⊗ ni)⊗ pi.

Hence we see that α and α′ are inverses, so what we have is an associator:

αM,N,P : (M ⊗N)⊗ P −!∼ M ⊗ (N ⊗ P ).

Now consider the trivial R-module, denoted I = {0}. For any R-module M we have evident
maps ∑

i

0⊗mi 7! mi

∑

i

mi ⊗ 0 7! 0

which provide isomorphisms, so that we have left and right associators

λM : I ⊗M −!∼ M ρM : M ⊗ I −!∼ M.

Finally, the triangular and pentagonal diagrams are commutative since shifting the tensor
product on individual elements does not change (up to isomorphism) the value of the overall
elements.
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Example 7.1.7. Consider the category GrModR which consist of graded R-modules M =
{Mn}∞n=1 Then this forms a monoidal category (GrModR,⊗, I) where I = {(0)n}∞n=1 is the
trivial graded R-module and where we define the monoidal product asM⊗N = {(M⊗N)n}∞n=1
where

(M ⊗N)n =
⊕

i+j=n
Mi ⊗Nj.

To show this monoidal, the first thing we must check is that we have an associator. Towards
this goal, consider three graded R-modules M = {Mn}∞n=1, N = {Nn}∞n=1 and P = {Pn}∞n=1.
Then the m-th graded module of M ⊗ (N ⊗ P ) is

[M ⊗ (N ⊗ P )]m =
⊕

i+j=m
Mi ⊗ (N ⊗ P )j =

⊕

i+j=m
Mi ⊗


 ⊕

h+k=j
Nh ⊗ Pk




=
⊕

i+h+k=m
Mi ⊗ (Nh ⊗ Pk)

∼=
⊕

i+h+k=m
(Mi ⊗Nh)⊗ Pk

=
⊕

l+k=m


 ⊕

i+h=l
Mi ⊗Nh


⊗ Pk

=
⊕

l+k=m
(M ⊗N)l ⊗ Pk

= [M ⊗ (N ⊗ P )]m

where in the third step we used the fact that the tensor product commutes with direct sums
and in the fourth step we used the canonical associator regarding the tensor products of three
element. Thus we see that we have an associator

α : M ⊗ (N ⊗ P ) −!∼ (M ⊗N)⊗ P

which as a graded module homomorphism, acts on each level as

αm : [M ⊗ (N ⊗ P )]m −!∼ [(M ⊗N)⊗ P ]m

where in each coordinate of the direct sums we apply an instance of the associator α′ between
the tensor product of three R-modules. The naturality of this associator is inherited from α′.
In addition, we have natural left and right unitors

λM : I ⊗M −!∼ M ρM : M ⊗ I −!∼ M

where on each level we utilize the natural left and right unitors for non-graded R-modules.
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Example 7.1.8. Let (M,⊗, I, α, ρ, λ) be a monoidal category, C any other category. Then the
functor category CM is a monoidal category. We treat the constant functor I : C M where

I(A) = I for all A

as the identity element, and we can define a tensor product on this category as follows: on
objects F,G : C M , we define F �G as the composite

F �G : C C × C M ×M M∆ (F×G) ⊗

which can be stated pointwise as (F �G)(C) = F (C)⊗G(C). On morphisms, we have that if
η : F1 F2 and η′ : G1 G2 are natural transformations, then we say η�η′ : F1�G1 F2�G2

is a natural transformation, where we define

(η � η′)A = ηA ⊗ η′A : F1(A)⊗G1(A) F2(A)⊗G2(A).

Note that such a natural transformation is well-defined as the diagram below commutes

A

B

f

F1(A)⊗G1(A) F2(A)⊗G2(A)

F1(B)⊗G1(B) F2(A)⊗G2(A)

ηA⊗η′A

F1(f)⊗G1(f) F2(f)⊗G2(f)

ηB⊗η′B

since ⊗ : M × M M is a bifunctor. Finally, for functors F,G,H : C M define the
associator α′F,G,H : F � (G � H) −!∼ (F � (G � H)) as the natural transformation where for
each object A

(α′F,G,H)A = αF (A),G(A),H(A) : F (A)⊗ (G(A)⊗H(A)) (F (A)⊗G(A))⊗H(A)

and the unitors λ′F : I � F F and ρ′F : F � I F as the natural transformations where
for each object A

(λ′F )A = λA : I ⊗ F (A) F (A) (ρ′F )A = ρA : F (A)⊗ I F (A).

One can then show that these together satisfy the pentagon and unit axioms.

Example 7.1.9. Consider the category P whose objects are the natural numbers (with 0



7.1 Monoidal Categories 245

included) and whose morphisms are the symmetric groups Sn. That is,
Objects. The objects are n = 0, 1, 2, . . . .
Morphisms. For any objects n,m we have that

HomP(n,m) =



Sn if n = m

∅ ifn 6= m.

Note that there are many ways of constructing this category; we just present the simplest. In
general terms this is the countable disjoint union of the symmetric groups. Even more generally,
this can be done for any family of groups (or rings, monoids, semigroups).

What is interesting about this category is that it intuitively forms a strict monoidal category.
That is, we can formulate a bifunctor + : P×P P on objects as addition of natural numbers
and on morphisms as

σ ⊗ τ ∈ Sn+m

where σ ∈ Sn and τ ∈ Sm and where σ⊗ τ denotes the direct sum permutation. I could tell
you in esoteric language and notation what that is, or I could just show you: σ and τ , displayed
as below

(1, 2, . . . , n) (1, 2, . . . ,m)

(σ(1), σ(2), . . . , σ(n)) (τ(1), τ(2), . . . , τ(m))

become σ ⊗ τ which is displayed as below.

(1, 2, . . . , n, n+ 1, n+ 2, . . . , n+m)

(σ(1), σ(2), . . . , σ(n), n+ τ(1), n+ τ(2), . . . , n+ τ(m))

To make this monoidal, we specify that 0 is our identity element whose associated identity
morphism is the empty permutation. Now clearly this operation is strict on objects. On
morphisms, it is also strict in the same way that stacking three Lego pieces together in the two
possible different ways are equivalent. Hence the associators and unitors are all identities and
this forms a strict monoidal category.

Proposition 7.1.10. Let C be a category equipped with natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) −!∼ (A⊗B)⊗ C
λA : I ⊗ A −!∼ A

ρA : A⊗ I −!∼ A

for all objects A,B,C ∈ C and some identity object I. Suppose the pentagonal diagram 7.2
holds for all objects of C. Then for all A,B ∈ C, the diagram
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A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

1A⊗λB ρA⊗1B

commutes if and only if the diagram

A⊗ (B ⊗ I) (A⊗B)⊗ I

A⊗B

αA,B,I

1A⊗ρB ρA⊗B

commutes, which commutes if and only if the diagram

I ⊗ (A⊗B) (I ⊗ A)⊗B

A⊗B

αI,A,B

λA⊗B ρA⊗1B

commutes.

This ultimately tells us that the definition of a monoidal category is not unique. That is,
there are two different yet exactly equivalent ways in which we could have defined a monoidal
category.

Thus what we see is that the definition of a monoidal category is very vast, and asks for a
lot. Moreover, we’ve shown that there are different coherence conditions we could have imposed
(the pentagonal diagram being the same), but they amount to stating the same thing.
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7.2 Monoidal Functors

Definition 7.2.1. Let (C,⊗, I) and (D,�, J) be monoidal categories. A (lax) monoidal
functor is a functor F : C D equipped with the following data.

• For each pair A, B in C, we have a natural morphism

ϕA,B : F (A)� F (B) F (A⊗B)

such that for any third object C, the diagram below commutes. (Note that we suppress
the subscripts for clarity.)

F (A)�
(
F (B)� F (C)

) (
F (A)� F (B)

)
� F (C)

F (A)� F (B ⊗ C) F (A⊗B)� F (C)

F
(
A⊗

(
B ⊗ C

))
F
((
A⊗B

)
⊗ C

)

α

1�ϕ ϕ�1

ϕ ϕ

F (α)

• There exists a unique morphism ε : J F (I) such that, for any object A of C, the
diagrams below commute. (Again, we suppress the subscripts for clarity.)

F (A)� J F (A)

F (A)� F (I) F (A⊗ I)

ρ

1�ε

ϕ

F (ρ)

J � F (A) F (A)

F (J)� F (A) F (I ⊗ A)

λ

ε�1

ϕ

F (λ)

We say the F is strong if ϕ and ε are isomorphisms and strict if ϕ and ε are identities.
We also define a monoidal natural transformation between two monoidal functors η :

F G to be a natural transformation between the functors such that, for every A,B, the
diagram below commutes.

F (A)� F (B) F (A⊗B)

G(A)�G(B) G(A⊗B)

ϕF

ηA�ηB ηA⊗B

ϕG
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Example 7.2.2. Consider the power set functor P : Set Set which associates each set X
with its power set P(X). We may ask if this yields a monoidal functor

P : (Set,×, {•}) (Set,×, {•})

in any sense of lax, strong, or strict. It turns out that we may define a lax monoidal functor,
but not a strong or strict.

Towards defining a lax monoidal functor, let A,B two sets. Define ϕA,B : P(A)×P(B)
P(A×B) to be a function where if U, V are subsets of A,B respectively, then

ϕA,B(U, V ) = U × V.

In addition, we define the function ε : {•} P ({•}) where

ε(•) = {•}.

Observe that with this data we have that for any sets A,B,C, the diagram below commutes

P(A)×
(
P(B)× P(C)

) (
P(A)× P(B)

)
× P(C)

P(A)× P(B × C) P(A×B)× P(C)

P
(
A×

(
B × C

))
P
((
A×B

)
× C

)

α

1×ϕ ϕ×1

ϕ ϕ

P(α)

and that for any set A the diagrams below commute.

P(A)× {•} P(A)

P(A)× P({•}) P(A× {•})

ρ

1×ε

ϕ

P(ρ)

{•} × P(A) P(A)

P({•})× P(A) P({•} × A)

λ

ε×1

ϕ

P(λ)

Note that our choice that ε(•) = {•} was necessary in order for the above two diagrams to
commute.

We now show that this cannot be a strong or strict monoidal functor. To see this, let A,B
be two sets. If |X| denotes the cardinality of a set X, then observe that

|P(A)× P(B)| = 2|A| · 2|B| = 2|A|+|B|
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while
|P(A×B)| = 2|A×B|.

We see that in general these two sets are not of the same cardinality, and therefore one cannot
establish an isomorphism between these two sets for all A,B, which we would need to do to at
least construct a strong monoidal functor. Hence, we cannot regard this functor as strong or
strict monoidal.

Example 7.2.3. The category of pointed topological spaces Top∗ is the category where
Objects. Pairs (X, x0) with X a topological space and x0 ∈ X
Morphisms. A morphism f : (X, x0) (Y, y0) is given by a continuous function f : X Y

such that f(x0) = y0.
This category is what allows us to characterize the fundamental group of a topological space
as a functor

π1 : Top∗ Grp

which sends a pointed space (X, x0) to its fundamental group π1(X, x0) with x0 as the selected
basepoint. We demonstrate that this can be regarded as a monoidal functor

π1 :
(
Top∗,×, ({•}, •)

)
(Grp,×, {e})

where {e} is the trivial group. The reader may be wondering how we are putting a cartesian
product structure on the Top∗, so we explain: For two topological spaces X, Y , we define

(X, x0)× (Y, y0) = (X × Y, (x0, y0))

where X×Y is given the product topology. The identity object ({•}, •) is the trivial topological
space with basepoint •.

For any two pointed topological spaces (X, x0), (Y, y0), define the function ϕX,Y : π1(X, x0)×
π1(Y, y0) π(X × Y, (x0, y0)) where for two loops β, γ based as x0, y0 respectively, then

ϕX,Y (β, γ) = β × γ : [0, 1] X × Y

which is in fact a loop in X × Y based at (x0, y0). The above function is bijective; an inverse
can be constructed by sending a loop δ in X × Y based at (x0, y0) to the tuple (p ◦ δ, q ◦ δ)
where

p : X × Y X q : X × Y Y

are the continuous projection maps. It is not difficult to see that this preserves group products,
so that ϕX,Y establishes the isomorphism

π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0)
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a fact usually proved in a topological course. In addition, this isomorphism to be natural:
for two pointed topological spaces (X, x0) and (Y, y0), and for a pair of base-point preserving
continuous functions f : (X, x0) (W,w0) and g : (Y, y0) (Z, z0), the following diagram
commutes.

π1(X, x0)× π1(Y, y0) π1(X × Y, (x0, y0))

π1(W,w0)× π1(Z, z0) π1(W × Z, (w0, z0))

ϕX,Y

π1(f)×π1(g) π1(f×g)

ϕW,Z

Thus ϕX,Y is our desired natural isomorphism.
Next, define ε : {e} π1({•}, •) to be the group homomorphism that takes e to the trivial

loop at •. As in the previous example, we are actually forced to define ε in this way since {e}
is initial in Grp.

With this data, one can easily check that the necessary diagrams are commutative, so that
the fundamental group functor π1 is strong monoidal.

Example 7.2.4. Recall that a Lie algebra is a vector space g over a field k with a bilinear
function [−,−] : g× g g such that
Antisymmetry. For all x, y ∈ g, [x, y] = −[y, x]
Jacobi Identity. For all x, y, z ∈ g we have that

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

For every Lie algebra g, we may create the universal enveloping algebra U(g). This is the
algebra constructed as follows: If T (g) is the tensor algebra of g, i.e.,

T (g) = k ⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · ·

and I(g) is the ideal generated by elements of the form x⊗ y − y ⊗ x− [x, y], then

U(g) = T (g)/I(g).

By Corollary V.2.2(b) of [?], this construction is actually a functor

U : LieAlg k-Alg.

Both categories can be regarded monoidal: (LieAlg,⊕, {•}) is the monoidal category where we
apply the cartesian product between Lie algebras, and (k-Alg,⊗, k) is the monoidal category
where we apply tensor products between k-algebras over the field k. The associators and
unitors are the same that we have encountered in previous examples of monoidal categories
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with cartesian and tensor products.
We demonstrate that the universal enveloping algebra functor is strong monoidal:

U : (LieAlg,⊕, {•}) (k-Alg,⊗, k)

• By Corollary V.2.3 of [?], we have that if g1 and g2 are two Lie algebras then U(g1⊕g2) ∼=
U(g1)⊗ U(g2). One can use Corollary V.2.3(a) to show that this isomorphism is natural
in both g1 and g2. We let this morphism be our required isomorphism

ϕg1,g2 : U(g1 ⊕ g2) U(g1)⊗ U(g2).

• Note that U({•}) = k. Therefore, we let ε : k k be the identity.

As the associators and unitors are simple for monoidal categories with cartesian and tensor
products, it is not difficult to show that the required diagrams commute. In this case, what is
more difficult is obtaining naturality in ϕ, although this is taken care of (in a long proof) in
Kassel’s text.
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7.3 What are those Coherence Conditions?

We are now going to address the elephant in the room: we have not explained why we have
included diagrams 7.1 and 7.2 in our definition. To explain this, we are going to discuss the
general structure of a monoidal category and answer the natural questions that arise.

Let (M,⊗, I, α, ρ, λ) be a monoidal category. For objects A,B,C, . . . ofM, we can use the
monoidal product ⊗ to generate various new expressions such as A⊗B which represent different
objects inM. Observe that using three objects, there are two different ways to combine the 3
objects:

A⊗ (B ⊗ C) (A⊗B)⊗ C.
There are five ways to combine 4 objects:

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) ((A⊗B)⊗ C)⊗D
A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D.

And there are 14 ways to combine 5 objects. We will not list them here.
Initially, we don’t really know what the relationship is between the various expressions we

are generating. For example, we may naturally wonder if

A⊗ (B ⊗ C) and (A⊗B)⊗ C

or
A⊗ (B ⊗ (C ⊗D)) and A⊗ ((B ⊗ C)⊗D)

have any relation with each other. This is because in practice when A,B,C,D are sets, vector
spaces, groups, or whatnot, the above expressions do have something to do with each other.
As we have seen, that relationship is usually an isomorphism. Therefore, if we are to develop
some kind of theory of monoidal categories which we can apply to real mathematics, we ought
to make sure that these objects are isomorphic in some way.

Monoidal categories by definition do in fact provide isomorphisms between different choices
of multiplying together a set of objects. For example, from the axioms of a monoidal category,
we know that the objects A⊗ (B⊗C) and (A⊗B)⊗C are related via the natural isomorphism
αA,B,C .

A⊗ (B ⊗ C) (A⊗B)⊗ CαA,B,C

We also know from the axioms of a monoidal category that the 5 products of 4 objects are
related via the diagram consisting of natural isomorphisms as below.
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A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

1A⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗1D

Moreover, this diagram is guaranteed to be commutative for all A,B,C,D inM (we will elab-
orate why this is a profound, useful fact).

Finally, repeatedly using instances of α, the 14 ways to multiply 5 objects are related via
the 3 dimensional diagram as below.



254 Chapter 7. Monoidal Categories

Front. (Note that the symbol ⊗ has been suppressed.)

Back.

A((BC)(DE))

A(((BC)D)E) • (A(BC))(DE)

A((B(CD))E) ((AB)C)(DE)
• •

(A((BC)D))E ((A(BC))D)E
•

(A(B(CD)))E (((AB)C)D)E

((AB)(CD))E

1A⊗αBC,D,E αA,BC,DE

αA,B(CD),E

αA,B,C⊗(1D⊗1E)

αA(BC),D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E α(AB)C,D,E

αA,BC,D⊗1E

(αA,B,C⊗1D)⊗1E(1A⊗αB,C,D)⊗1E

αA,B,CD⊗1E αAB,C,D⊗1E

A((BC)(DE))

(A(BC))(DE) A(B(C(DE))) A(((BC)D)E)

((AB)C)(DE) A((B(CD))E)

(AB)(C(DE)) A(B((CD)E)

• •
(AB)((CD)E)

(((AB)C)D)E (A(B(CD)))E

((AB)(CD))E

1A⊗αBC,D,EαA,BC,DE

αA,B,C⊗(1D⊗1E)

1A⊗αB,C,DE

αA,B,C(DE) 1A⊗(1B⊗αC,D,E)

α(AB)C,D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E

αAB,C,DE

(1A⊗1B)⊗αC,D,E

1A⊗αB,CD,E

αA,B,(CD)E

αAB,CD,E

αA,B,CD⊗1EαAB,C,D⊗1E
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However, it is not an axiom of monoidal categories that this last diagram is commutative (with
a ton of work, one could prove it to be commutative).

To understand what’s going on, let us first understand why commutativity is important. The
axioms of a monoidal category grant us the commutativity of the pentagon, which connects the
five different ways of multiplying four objects A,B,C,D. This tells us the following principle:
while there are 5 different ways we can multiply four objects A,B,C,D, each such choice is
canonically isomorphic to any other choice.

To see this, suppose you and I want to multiply objects A,B,C,D together. Suppose my
favorite way to do it is (A⊗B)⊗ (C⊗D), while you choose (A⊗ (B⊗C))⊗D. Then we might
be in trouble: I have two possible ways, displayed below in blue and orange, to “reparenthesize”
my product to get your object.

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

α−1

1⊗α

α

α

α−1⊗1

Fortunately, the commutativity of the pentagonal diagram enures that the two paths are equal.
That is,

α ◦ ((1⊗ α) ◦ α−1) = (α−1 ⊗ 1) ◦ α.
so that, in reality, I actually have one unique isomorphism (i.e., a canonical isomorphism) from
my object to yours, and you can also canonically get from your object to mine by inverting the
unique isomorphism.

However, our choice of two different parenthesizations was arbitrary. The commutativity of
the entire diagram therefore tells us that any choice of “parenthesizing” A ⊗ B ⊗ C ⊗ D, the
product of 4 objects inM, is canonically isomorphic to any other possible choice. This brings
up a few questions.

• What do we mean by “parenthesizing?”

• What about a product with n-many objects A for n > 4?

We will rigorously specify what we mean by parenthesizing in a bit. To answer the second
question, we state that this result holds for n > 4; this is one version of the Coherence Theorem.
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7.4 Mac Lane’s Coherence Theorem

Step One: Category of Binary Words

To begin the proof of the coherence theorem, we need to first state the theorem itself. This task
itself is quite laborious, although it is a worthwhile investment to establish clear terminology
and notation, especially in writing the proof itself. Our primary tool will be the abstract
concept of a binary word.
Definition 7.4.1. Let x0, x1 be two distinct symbols. A binary word w is an element defined
recursively as follows.

• x0 and x1 are binary words.

• If u, v are binary words, then (u)⊗ (v) is a binary word.

More precisely, a binary word is any element in the free magma M = F ({x0, x1}) generated by
x0, x1, but we will see that the first definition we offered is more useful and transparent.

Example 7.4.2. Since x0, x1 are binary words so is the expression (x0)⊗ (x1). Similarly, the
expressions

(x0)⊗ ((x0)⊗ (x1)) ((x0)⊗ (x1))⊗ x1

are binary words.

From the previous example, we see that the notation is a bit clunky. On one hand, our
definition, which states that (u) ⊗ (v) is a binary word if u, v are, is required so that we can
logically manage our parentheses. On the other, it makes notation clunky.

To remedy this, we will often omit parentheses. Given an expression of a binary word, we
will always omit the parentheses around individual symbols in the expression. With this rule,
we have that:

(x0)⊗ (x1) = x0 ⊗ x1

(x0)⊗ ((x0)⊗ (x1)) = x0 ⊗ (x0 ⊗ x1)
((x0)⊗ (x1))⊗ (x1) = (x0 ⊗ x1)⊗ x1

That is, we keep the parentheses which group together individual products, and throw away
the ones which our smart human brains can don’t need.

Next, we move onto an important quantity that we will often perform induction on.
Definition 7.4.3. We define the length of a binary word w, denoted as L(w), recursively
as follows.

• L(x0) = 0 and L(x1) = 1
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• If w = u⊗ v for two binary words u, v, we set L(w) = L(u) + L(v).

Example 7.4.4. The binary words (x1⊗x0)⊗x1, (x1⊗x1)⊗x0, (x0⊗ (x1⊗x1))⊗x0 all have
length 2.

More informally, the length of binary word is simply the number of x1 symbols that appear
in its expression.

Example 7.4.5. For any binary word w, we have that

L(w ⊗ x0) = L(x0 ⊗ w) = L(w).

If additionally u, v are binary words, we also have that

L(u⊗ (v ⊗ w)) = L(u) + (L(v) + L(w))
= (L(u) + L(v)) + L(w)
= L((u⊗ v)⊗ w).

We will use the observations made in the previous example later in this section.

We now demonstrate that these binary words assemble into a category.
Definition 7.4.6. The category of binary words is the category W where
Objects. All binary words w of length n = 0, 1, 2, . . . ,
Morphisms. For any two binary words w and v, we have that

HomW(v, w) =



{•} if v, w are the same length
∅ otherwise.

where {•} denotes the one point set.

What the above definition tells us is that any two binary words share a morphism if and
only if they are of the same length. Moreover, they will only ever share exactly one morphism.
Since there is always at most one morphism between any two objects in W , we see that W
is a thin category. Moreover, it is monoidal. To prove that it is monoidal, we will need the
following small lemma.
Lemma 7.4.7. The multiplication of binary words extends to a bifunctor ⊗ :W ×W W .

Proof. First, we explain how ⊗ :W×W W operates on objects and morphisms. If (u, v)
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is an object of W ×W , we set ⊗(u, v) = u⊗ v. Next, consider two morphisms in W .

γ : u u′ β : v v′.

Note that this implies L(u) = L(u′) an L(v) = L(v′), which also imply that

L(u⊗ v) = L(u) + L(v) = L(u′) + L(v′) = L(u′ ⊗ v′).

Therefore, we define the image of (γ, β) under the functor, ⊗(γ, β), which we more naturally
denote as γ ⊗ β, to be the unique morphism between u⊗ v u′ ⊗ v′.

We can picture the action of this functor on objects and morphisms more clearly as below.

(u1, v1) (u2, v2)(γ,β)
W ×W

maps to u⊗ v u′ ⊗ v′γ⊗β
W

In addition, for any (u, v) inW×W , the identity morphism 1(u,v) : (u, v) (u, v) is mapped
to the identity 1u⊗v : u⊗ v u⊗ v. Finally, to demonstrate that this respects composition,
suppose that (γ, β) is composable with (γ′, β′) as below.

(u1, v1) (u2, v2) (u3, v3)(γ,β) (γ′,β′)
W ×W

As both (γ′, β′)⊗(γ, β) and (γ′◦γ)⊗(β′◦β) are parallel morphisms acting as (u1, v1) (u3, v3),
they must be equal because W is a thin category (and hence parallel morphisms are equal).

Therefore, we see that ⊗ :W ×W W is a bifunctor. �

We now show that W assembles into a monoidal category.
Proposition 7.4.8. (W ,⊗, x0) is a monoidal category with monoidal product ⊗ :W×W W
and identity object x0.

Proof. First, we define our product to be given by the bifunctor ⊗ :W ×W W . Second,
we define our identity object to be x0. With these two conditions we now need to find unitors,
an associator, and check that the necessary diagrams commute.

Now as any two binary words of the same length share a unique morphism, all morphisms
are isomorphisms. Therefore, by Example 7.4, the isomorphisms

αu,v,w : u⊗ (v ⊗ w) −!∼ (u⊗ v)⊗ w
λw : x0 ⊗ w −!∼ w

ρw : w ⊗ x0 −!∼ w

are forced to exist. Further, these isomorphisms are natural because all diagrams commute
in a thin category. In addition, since W is a thin category, all diagrams commute, and so, in
particular, the required diagrams
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u⊗ (x0 ⊗ v) (u⊗ x0)⊗ v

u⊗ v

αu,x0,v

1u⊗λv ρu⊗1v

u⊗ (v ⊗ (w ⊗ z)) (u⊗ v)⊗ (w ⊗ z) ((u⊗ v)⊗ w)⊗ z

u⊗ ((v ⊗ w)⊗ z) (u⊗ (v ⊗ w))⊗ z

αu,v,w⊗z

1u⊗αv,w,z

αu⊗v,w,z

αu,v⊗w,z

αu,v,w⊗1z

also commute, so that (W ,⊗, x0) satisfies the axioms of a monoidal category. �

We now make a few important comments on how to interpret α, ρ, and λ.

• Each αu,v,w : u⊗ (v ⊗ w) (u⊗ v)⊗ w can be thought of as an operator which shifts
the parentheses to the left. Dually, α−1

u,v,w shift them to the right.
• Each λw : x0⊗w −!∼ w can be thought of as an operator that removes an identity from

the left. Dually, λ−1
w adds an identity to the left.

• Each ρw : w⊗ x0 −!∼ w can be thought of as an operator that removes an identity from
the right. Dually, ρ−1

w adds an identity to the right.

Hence, this very primitive monoidal category W encodes some basic and useful operators on
binary words.
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Step Two: Pure Binary Words
In this section we begin discussing a specific subset of binary words, namely the ones which
lack an identity x0. As the theorem is quite complex, this initial restriction allows us to develop
intuition and some tools that simplify the proof later.
Definition 7.4.9. A pure binary word w of length n is a binary word w of length n which
has no instance the empty word x0.

Example 7.4.10. The only pure binary word of length 1 is x1. There is also only one pure
binary word of length 2, which is x1 ⊗ x1. The pure binary words of length 3 are

x1 ⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1

and the pure binary words of length 4 are as below.

x1 ⊗ (x1 ⊗ (x1 ⊗ x1)) x1 ⊗ ((x1 ⊗ x1)⊗ x1) ((x1 ⊗ x1)⊗ x1)⊗ x1

x1 ⊗ ((x1 ⊗ x1)⊗ x1) (x1 ⊗ (x1 ⊗ x1))⊗ x1

As a side note, we comment that the number of pure binary words of length n + 1 is the
n-th Catalan number

Cn = 1
n+ 1

(
2n
n

)
1, 2, 5, 14, 42, 132, 429, · · ·

However, we make no critical use of this fact in our proofs. Next, we form a category of pure
binary words.
Definition 7.4.11. The category of pure binary words WP is the full subcategory of W
constructed by restricting the objects of W to its pure binary words.

More explicitly, WP is the category defined as:
Objects. All pure binary words w of length n = 0, 1, 2, . . . ,
Morphisms. For any two pure binary words u, v of the same length, we have that HomWA

(u, v) =
{•}, the one point set. No other morphisms are allowed.

We now focus on a particular set of morphisms in WP. Recall that we may think of each
αu,w,v as a “shift map”

αu,w,v : u⊗ (v ⊗ w) (u⊗ v)⊗ w
which makes a single change in the parenthesis of a binary word. However, α itself does not
characterize all possible always in which we make a single change of parentheses within a larger,
more complex binary word. An example of this is the morphism

1s ⊗ αu,v,w : s⊗ (u⊗ (v ⊗ w)) s⊗ ((u⊗ v)⊗ w)
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which makes an internal change of parentheses. As we will need to focus on these more com-
plicated morphisms, we rigorously define them below.
Definition 7.4.12 (α-arrows). A forward α-arrow of WP is a morphism in WP which we
recursively define as follows.

• For any triple of pure binary words w1, w2, w3 in WP, the morphism

αw1,w2,w3 : w1 ⊗ (w2 ⊗ w3) (w1 ⊗ w2)⊗ w3

is a forward α-arrow.

• If β : w w′ is a forward α-arrow, and u is an arbitrary pure binary word, then the
morphisms

1u ⊗ β : u⊗ w u⊗ w′ β ⊗ 1u : w ⊗ u w′ ⊗ u
are forward α-arrows.

We also define a backward α-arrow to be the inverse of a forward α-arrow.

Example 7.4.13. Below are a few simple examples of α-arrows. The first two are forward,
while the third is backward.

x1 ⊗ (x1 ⊗ x1)

(x1 ⊗ x1)⊗ x1

αx1,x1,x1

x1 ⊗ (x1 ⊗ (x1 ⊗ x1))

x1 ⊗ ((x1 ⊗ x1)⊗ x1)

1x1⊗αx1,x1,x1

(x1 ⊗ x1)⊗ (x1 ⊗ x1)

x1 ⊗ (x1 ⊗ (x1 ⊗ x1))

α−1
x1,x1,x1⊗x1

We can have even more complicated examples; for example, the morphism below

(u⊗ (x1 ⊗ (x1 ⊗ x1)))⊗ v

(u⊗ ((x1 ⊗ x1)⊗ x1)⊗ v

(1u⊗αx1,x1,x1 )⊗1v

is an α-morphism for any pure binary words u, v. For example, setting u = (x1 ⊗ x1)⊗ x1 and
v = x1 ⊗ x1, we obtain the forward α-arrow as below.

((x1 ⊗ x1)⊗ x1 ⊗ (x1 ⊗ (x1 ⊗ x1)))⊗ (x1 ⊗ x1)

((x1 ⊗ x1)⊗ x1 ⊗ ((x1 ⊗ x1)⊗ x1)⊗ (x1 ⊗ x1)

(1(x1⊗x1)⊗x1⊗αx1,x1,x1 )⊗1(x1⊗x1)

We emphasize that α-arrows only ever involve a single instance of α or α−1 in their expres-
sion.

Next, we introduce a particularly important instance of a pure binary word that will become
essential to our proof.
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Definition 7.4.14. We define the terminal word w(n) of length n recursively as follows.

• x1 is the terminal word of length 1.

• If w(k) is the terminal word of length k, then w(k+1) = wk ⊗ x1 is the terminal word of
length k + 1.

More informally, the terminal word is the unique pure binary word of length n for which all
parentheses begin on the left.

Example 7.4.15. Below we list the terminal words by length.

Length Terminal Word
1 x1

2 x1 ⊗ x1

3 (x1 ⊗ x1)⊗ x1

4 ((x1 ⊗ x1)⊗ x1)⊗ x1

5 (((x1 ⊗ x1)⊗ x1)⊗ x1)⊗ x1

We now introduce a quantity which provides a “distance-measure” between a pure binary
word of length n and the terminal word w(n).
Definition 7.4.16. We (recursively) define the rank of a binary word as follows.

• r(x1) = 0.

• For a pure binary word of the form w = u⊗ v, we set

r(u⊗ v) = r(u) + r(v) + L(v)− 1.

Example 7.4.17. We compute the ranks on the pure binary words of length 4.

r(x1(x1(x1x1))) = 3 r(x1((x1x1)x1)) = 2
r((x1x1)(x1x1)) = 1 r((x1(x1x1))x1) = 1
r(((x1x1)x1)x1) = 0

Note that w(4) = ((x1x1)x1)x1 and r(((x1x1)x1)x) = 0. Hence we see that our intuition of
the rank being a distance measure from w(n) so far makes sense.

An important property of distance-measuring functions is nonnegativity, which we will now
see is satisfied by the rank function.
Lemma 7.4.18. Let w be a pure binary word of length n. Then r(w) ≥ 0.
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Proof. We prove this by induction on n. First observe that this clearly holds for n = 0 since
r(x1) = 0.

Now let w be a pure binary word of length k, and suppose the statement is true for all
pure binary words with length less than k. Since k > 1, we may write w = u ⊗ v for some
pure binary words u, v, in which case

r(w) =
≥0 by induction︷ ︸︸ ︷
r(u) + r(v) +L(v)− 1.

Since L(v) ≥ 1, we see that r(w) ≥ 0 as desired. �

Keeping with the analogy of the rank being a distance measure, we ought to verify that it
is zero if and only if the input, which is being measured from w(n), is w(n) itself. We verify that
this is the case for the rank function.
Proposition 7.4.19. Let w be a pure binary word of length n. Then r(w) = 0 if and only if
w = w(n).

Proof. We proceed by induction. In the simplest case, when n = 1, we have that r(x1) = 0
by definition. As x1 = w(1), we see that this satisfies the statement.

Let w be a pure binary word of length k, and suppose the statement is true for all pure
binary words with length less than k. Then we may write our word in the form w = u ⊗ v,
and we have that

r(w) = r(u) + r(v) + L(v)− 1.

By Lemma 7.4.18 we know that r(u), r(v) ≥ 0. Therefore, if L(v) > 1 then r(w) 6= 0. Hence,
consider the case for when L(v) = 1, so that v = x1. Then

r(u⊗ v) = r(u) + r(x1) + L(x1)− 1 = r(u)

Therefore, r(w) = 0 if and only if if r(u) = 0. But by induction, this holds if and only if
u = w(k−1). So we see that w = w(k−1) ⊗ x1 = w(k), which proves our result for all n. �

Lemma 7.4.20. Let β : v w be a forward α-arrow. Then r(v) < r(w). In other words,
forward α-arrows decrease rank.

Proof. To demonstrate this, we perform induction on the structure of forward α-arrows.
Our base case is β = αu,v,w : u⊗ (v⊗w) −!∼ (u⊗ v)⊗w for some arbitrary words u, v, w.

With this case, observe that

r(u⊗ (v ⊗ w)) = r(u) + r(v ⊗ w) + L(v ⊗ w)− 1
= r(u) + (r(v) + r(w) + L(w)− 1)
+ L(v ⊗ w)− 1
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while

r((u⊗ v)⊗ w) = r(u⊗ v) + r(w) + L(w)− 1
= r(u) + r(v) + r(w) + L(v)− 1 + r(w)
+ L(w)− 1.

If we subtract the quantities, we observe that

r(u⊗ (v ⊗ w))− r((u⊗ v)⊗ w) = L(v ⊗ w)− L(w) > 0

since v has at least length 1. Therefore αu,v,w decreases length as desired.
Next, we reach our inductive step: let β = 1u ⊗ γ : u⊗ v u⊗w where γ : v w is a

forward α-arrow for which the statement is already true. In this case we have that

r(u⊗ v) = r(u) + r(v) + L(v)− 1.

while

r(u⊗ w) = r(u) + r(w) + L(w)− 1.

Since L(v) = L(w) and r(v) > r(w), we see that r(u⊗ v) > r(u⊗w). Therefore, we see that
β = 1u ⊗ γ decreases rank whenever γ is a forward α-arrow that also decreases rank.

Finally, let β = γ ⊗ 1u where γ : v w is a forward α arrow for which the statement is
already true. Then we may write β : v ⊗ u w ⊗ u Now observe that

r(v ⊗ u) = r(v) + r(u) + L(u)− 1

while
r(w ⊗ u) = r(w) + r(u) + L(u)− 1.

Since γ : v w decreases rank, we see that r(v) > r(w) and therefore r(v ⊗ u) > r(w ⊗ u),
as desired.

This completes the proof by induction, so that the statement is true for all forward α-
arrows. �

Thus what we have on our hands is the following. We know that the rank of word w is zero
if and only if w = w(n). Further, we know that applying α-arrows to a pure binary word will
decrease its rank. In other words, shifting the parentheses of a pure binary word w brings w
“closer” to w(n) (whose parentheses are all on the left). Therefore, the rank of a pure binary
word gives us a measure for how far a binary word w is away from w(n).

The following lemma demonstrates our interest in the word w(n).
Proposition 7.4.21. Let w be a pure binary word of length n. If w 6= w(n), then there exists
a finite sequence of forward α-arrows from w to w(n).
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Proof. We first show that for every pure binary word w 6= w(n) there exists a forward α-arrow
β with domain w. We prove this statement by induction on length.

Observe the result is immediate for n = 1, 2. Suppose the result is true for binary words
with length less than n ≥ 3. Let w be a pure binary word with length n. Then w = u ⊗ v,
with u, v other pure binary words. We now consider two cases for u and v.

(1) The first case is when L(v) = 1, so that v = x1. As w 6= w(n) we know that u 6= w(n−1),
and since u has length less than w, we see that by induction there exists a forward
α-arrow β : u u′. Using β, we can construct the forward α-arrow

β ⊗ 1x1 : u⊗ x1 u′ ⊗ x1.

Hence β ⊗ 1x1 is our desired forward α-arrow with domain w.

(2) The second case is when L(v) > 1. In this case we may write w = u⊗ (r⊗s). A natural
choice for a forward α-arrow in this case is simply

αu,v,s : u⊗ (r ⊗ s) (u⊗ r)⊗ s

so that this case is also satisfied.

As we see, in all cases for w 6= w(n), we can find a forward α-arrow with domain w. As α-
arrows decrease rank, and r(w) = 0 if and only if w(n), this guarantees a sequence of α-arrows
from w to w(n), which is what we set out to show. �

The previous proposition has an immediate, useful corollary. It will be used as one of the
building blocks for the next section.
Corollary 7.4.22. Every morphism inWP can be expressed as a finite composition of α-arrows.

Proof. Let v, w be arbitrary pure binary words. Denote ϕv,w : v w to be the unique
morphism from v to w. By Proposition 7.4.21 there exists chains of forward α-arrows whose
composite we denote as Γ1 : v w(n),Γ2 : w w(n). Our situation is pictured below.

v w

w(n)

ϕv,w

Γ1 Γ−1
2

However, WP is a thin category, so parallel morphisms must be equal. Therefore

ϕv,w = Γ−1
2 ◦ Γ1.

Hence ϕv,w is a composition of α-arrows. As ϕv,w was arbitrary, we see that every morphism
in WP is a finite composition of α-arrows. �
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What this corollary says is that every morphism in WP can be expressed as a composite
of forward and backward α-arrows. However, we emphasize that there can be many different
ways to represent a morphism inWP via α-arrows. This will be an issue which we discuss later
in the next section.
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Step Three: Coherence for A⊗n in α

Using our results from the previous section, we are almost ready to take our first major step in
the proof of Mac Lane’s Coherence Theorem. Before we do so, we need to introduce terminology
to even state the theorem which we will prove in this section. Towards that goal we introduce
a few more definitions.
Definition 7.4.23. Let (M, α, λ, ρ, I,⊗) be a monoidal category. For an object A of M, we
define the proxy map of A to be a partial functor

(−)A :WP M

as follows. Note by partial functor, we mean a functor defined on all objects of WP, but only
a subset of all morphisms of WP.
Objects. We define the action on objects recursively as follows.

• We set (x1)A = A.

• For a binary word w = u⊗ v, we define

(w)A = (u⊗ v)A = (u)A ⊗ (v)A

Morphisms. We define the partial functor only on α-arrows. We do this recursively as follows.

• For αu,v,w with u, v, w as pure binary words, we set:

(αu,v,w)A = α(u)A,(v)A,(w)A

(α−1
u,v,w)A = α−1

(u)A,(v)A,(w)A

• For 1u ⊗ β and β ⊗ 1u with β an α-arrow, we set:

(1u ⊗ β)A = 1(u)A ⊗ (β)A
(β ⊗ 1u)A = (β)A ⊗ 1(u)A

We now introduce the theorem of the section. This theorem is the first major step in the
proof of the coherence theorem, and the rest of this section will be dedicated to proving it.

Theorem 7.4.24 (Coherence in α.). Let (M,⊗, I, α, λ, ρ) be a monoidal category. For every
object A, there exists a unique functor ΦA :WP M which restricts to the proxy map (−)A
on objects and α-arrows of WP.

We address the question the reader most likely has in mind right now: Why did we only
define the proxy map on α-arrows? Why not define it on all of the morphisms of WP to get a
functor to begin with? We did this to avoid a potential well-definedness issue, which we now
elaborate on.
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Let us attempt to naturally extend the proxy map to a functor. With Corollary 7.4.22, it is
clear how to proceed on defining (−)A on general morphisms. Let γ : v w be any morphism
in WP. By Corollary 7.4.22, there exist forward and backward α-arrows γ1, . . . , γn such that

γ = γn ◦ · · · ◦ γ1.

Since the proxy map is in fact defined on α-arrows, and since functors preserve composition,
we are required to define

(γ)A = (γn)A ◦ · · · ◦ (γ1)A.

However, we need to be careful. Suppose that we can also express γ as the finite composition
of α-morphisms δ1, . . . , δm.

γ = δm ◦ · · · ◦ δ1.

While γn◦· · ·◦γ1 = δm◦· · ·◦δ1 becauseWP is a thin category, and therefore parallel morphisms
are equal, we have no idea if

(γn)A ◦ · · · ◦ (γ1)A = (δm)A ◦ · · · ◦ (δ1)A

is true in M. That is, we do not know if equivalent morphisms in WP are mapped to equal
morphisms under the proxy map. Our issue is one of well-definedness.

This issue is similar to one which arises in group theory. When one attempts to define
a group homomorphism on a quotient group, they must understand that there are different,
equivalent ways to represent an element. In this situation they must make sure that the
equivalent elements are mapped to the same target in the codomain.

Example 7.4.25. To illustrate our point, we include a concrete example of our problem which
also demonstrates its nontriviality. For notational convenience, we suppress the instances of
the monoidal product ⊗. Let

γ : x1((x1x1)(x1x1)) ((x1(x1x1))x1)x1.

Then we have many possible ways of expressing γ in terms of our α-arrows. Some potential
ways we could express γ are displayed below in purple, blue, or orange.
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x1((x1x1)(x1x1))

x1(((x1x1)x1)x1) (x1(x1x1))(x1x1)

x1((x1(x1x1))x1) ((x1x1)x1)(x1x1)

(x1((x1x1)x1))x1 ((x1(x1x1))x1)x1

(x1(x1(x1x1)))x1 (((x1x1)x1)x1)x1

((x1x1)(x1x1))x1

γ

1x1⊗αx1x1,x1,x1 αx1,x1x1,x1x1

αx1,x1(x1x1),x1

αx1,x1,x1⊗(1x1⊗1x1 )αx1(x1x1),x1,x1
(1x1⊗α

−1
x1,x1,x1 )⊗1x1

αx1,x1x1x1,x1 α(x1x1)x1,x1,x1

αx1,x1x1,x1⊗1x1

(α−1
x1,x1,x1⊗1x1 )⊗1x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1,x1x1⊗1x1 αx1x1,x1,x1⊗1x1

As this is a thin category, we know that the composition of these paths are equal in WP.
However, we now have many ways to define γ under the proxy map (−)A. We could write

(γ)A = ((α−1
x1,x1,x1 ⊗ 1x1)⊗ 1x1)A ◦ · · · ◦ (1x1 ⊗ αx1x1,x1,x1)A

= (α−1
A,A,A ⊗ 1A)⊗ 1A ◦ · · · ◦ 1A ⊗ αAA,A,A

or

(γ)A = (αx1,x1x1,x1 ⊗ 1x1)A ◦ · · · ◦ (1x1 ⊗ αx1x1,x1,x1)A
= αA,AA,A ⊗ 1A ◦ · · · ◦ 1A ⊗ αAA,A,A

or

(γ)A = (αx1(x1x1),x1,x1)A ◦ (αx1,x1x1,x1x1)A
= αA(AA),A,A ◦ αA,AA,AA

But as morphisms inM, we don’t know if these compositions inM, displayed below, are all
equal.
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A((AA)(AA))

A(((AA)A)A) (A(AA))(AA)

A((A(AA))A) ((AA)A)(AA)

(A((AA)A))A ((A(AA))A)A

(A(A(AA)))A (((AA)A)A)A

((AA)(AA))A

(γ)A

1A⊗αAA,A,A αA,AA,AA

αA,A(AA),A

αA,A,A⊗(1A⊗1A)αA(AA),A,A
(1A⊗α−1

A,A,A)⊗1A

αA,AAA,A α(AA)A,A,A

αA,AA,A⊗1A

(α−1
A,A,A⊗1A)⊗1A(1A⊗αA,A,A)⊗1A

αA,A,AA⊗1A αAA,A,A⊗1A

Hence we need to show that the purple, blue, and orange compositions are equal inM. While
we could perform tedious diagram chases to show that they are equal inM, that would only
address three of the many possible ways to express γ. It also would not take care of the case
for much larger binary words! Hence, this problem is very nontrivial in general; we need higher
level techniques to get what we want.

Therefore, to define a functor in the first place, we need to prove the following fact.
Proposition 7.4.26. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A be an object of
M. Let v, w be binary words of the same length. If β1, . . . , βk and γ1, . . . , γ` are α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : v w

then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

To prove this proposition, we will see that it actually suffices to prove the the special case
with w = w(n) and with β1, . . . , βk and γ1, . . . , γ` all forward α-arrows. That is, it suffices to
prove the following proposition.
Proposition 7.4.27. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A be an object of
M. Let w be a pure binary word of length n. If β1, . . . , βk and γ1, . . . , γ` are forward α-arrows
with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : w w(n)

in WP, then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

To prove this it will suffice to prove the Diamond Lemma (stated below). It will turn out
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the bulk of the overall proof toward our theorem will be spent on the Diamond Lemma. At
the risk of downplaying its importance, we leave the proof of the Diamond Lemma to the end
since it is very tedious and involved, and we do not want to disrupt the flow of the current
discussion.

We summarize our plan on how to prove Theorem 7.4.24. The uncolored boxes, and the
implications between them, are what is left to do.

thisisareallyreallyreallyrealyreallyreallyreallyreallylong︸ ︷︷ ︸

Work of Section 1.7 Diamond Lemma

Proposition 7.4.21 Proposition 7.4.27

Proposition 7.4.26

Theorem 7.4.24

Lemma 7.4.28 (Diamond Lemma). Let w be a pure binary word and suppose β1, β2 are two
forward α-arrows as below.

w

w1 w2

β1 β2

There exists a pure binary word z and two γ1 : w1 z, γ2 : w2 z, with γ1, γ2 a composition
of forward α-arrows, such that for any monoidal category (M,⊗, I, α, λ, ρ) the diagram below
is commutative inM.

(w)A

(w1)A (w2)A

(z)A

(β1)A (β2)A

(γ1)A (γ2)A

Since the above lemma is an existence result, we emphasize this fact by coloring the arrows,
which we are asserting to exist, Green. This is a practice we will continue.

As promised, we now prove Proposition 7.4.27 using the Diamond lemma. We restate the
statement of the proposition for the reader’s convenience.
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Proposition 7.4.27. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A be an object of
M. Let w be a pure binary word of length n. If β1, . . . , βk and γ1, . . . , γ` are forward α-arrows
with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : w w(n)

in WP, then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

Proof. To prove the desired statement, we proceed by induction on the rank of a pure binary
word w. In what follows we write we will write w = u⊗ v since L(w) ≥ 3.

For our base case let w be a word of rank 0. Then by Proposition 7.4.19 we see that
w = w(n) so that this statement is trivial.

Next suppose the statement is true for all words with rank at most k where k ≥ 0. Let w
be a pure binary word of rank k + 1. We want to show that the diagram inM

(w)A

(u1)A (v1)A

(w(n))A

(β1)A (γ1)A

(βk)A◦···◦(β2)A (γ`)A◦···◦(γ2)A

is commutative. By the Diamond Lemma 7.4.28, there exists exist a pure binary word z and
two composites of forward α-arrows β′ and γ′ such that the diagram below is commutative
inM.

(w)A

(u1)A (v1)A

(z)A

(β1)A (γ1)A

(β′)A (γ′)A

Let Γz : z w(n) by any composition of forward α-arrows from z to w(n); at least one must
exist by Proposition 7.4.21. We can now combine our two diagrams in M to obtain the
diagram below.

(w)A

(u1)A (v1)A

(z)A

w(n)

(β1)A (γ1)A

(β′)A

(βk)A◦···◦(β2)A

(γ′)A

(γ`)◦···◦(γ2)A(Γz)A
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By Lemma 7.4.20, we know that forward α-arrows decrease rank, so that r(u1) < r(w) and
r(v1) > r(w). Hence we invoke our induction hypothesis to conclude that both the lower left
and lower right triangles commute inM. As the original upper diamond already commutes
via the Diamond Lemma, we see that the entire diagram is commutative. Therefore we have
that

(βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A

inM. This completes our induction and hence the proof. �

As promised, we use the above proposition to prove Proposition 7.4.26.

Proposition 7.4.26. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and let A be an object of
M. Let v, w be binary words of the same length. If β1, . . . , βk and γ1, . . . , γ` are α-arrows with

βk ◦ · · · ◦ β1, γ` ◦ · · · ◦ γ1 : v w

then (βk)A ◦ · · · ◦ (β1)A = (γ`)A ◦ · · · ◦ (γ1)A inM.

Proof. We begin by denoting the domain and codomain of the α-arrows to make our discussion
clear. Let u0, . . . , uk, t0, . . . , t` be the pure binary words such that u0 = t0 = v, vk = u` = w

and

βi : ui−1 ui, i = 1, 2, . . . , k
γj : tj−1 tj, j = 1, 2, . . . , `

Note that each morphism may either be forward or backward. With this notation we can
picture our parallel α-arrows in WP as below.

β1

β2
β3

βk

v

u1
u2

· · ·

w

γ1

γ2
γ3

γ`

t1
t2

· · ·

Now consider the image of this diagram inM, which we do not yet know to be commutative.
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(β1)A

(β2)A
(β3)A (βk)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γ`)A

(t1)A
(t2)A

· · ·

Our goal is to show that this diagram inM is in fact commutative. This will then show our
desired equality.

By Proposition 7.4.21, we can connect each pure binary word ui and ti to the terminal
word w(n) with forward α-arrows Γui : ui w(n) and Γti : ti w(n). If we add these to our
diagram (and suppress the notation on the Γ’s), it becomes

β1

β2
β3

βk

v

u1
u2

· · ·

w

γ1

γ2
γ3

γ`

t1
t2

· · ·

w(n)

whose image under the proxy map inM is
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(β1)A

(β2)A
(β3)A (βk)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γ`)A

(t1)A
(t2)A

· · ·

(w(n))A

Thus the diagram has become a cone, with apex w(n), which is sliced by the triangles. The
base of this cone is the original diagram. We now show that each triangle is commutative.

Note that each triangle is of two possible forms: it either consists of βi or γi. Without
loss of generality, consider a triangle with an instance of βi, as below.

(ui−1)A (ui)A

(w(n))A

(Γui−1 )A

(βi)A

(Γui )A

Now if βi is a forward α-arrow, observe that by Proposition 7.4.27 it is a commutative diagram
inM.

On the other hand, suppose βi is a backward α-arrow. Then β−1
i is a forward α-arrow.

Then we may rewrite the triangle as

(ui−1)A (ui)A

(w(n))A

(Γui−1 )A

(β−1
i )A

(Γui )A

so that it now consists entirely of forward α-arrows. This then allows us to apply Proposition
7.4.27 to guarantee that it is a commutative diagram in M. Thus, what we have shown is
that each triangle in the above diagram is commutative inM. This literally means that for
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each i,

(Γui)A ◦ (βi)A = (Γui−1)A =⇒ (βi)A = (Γui)−1
A ◦ (Γui−1)A

(Γti)A ◦ (γi)A = (Γti−1)A =⇒ (γi)A = (Γti)−1
A ◦ (Γti−1)A

Therefore, we see that (βk)A ◦ · · · ◦ (β1)A can be written as
(

(Γuk)−1
A ◦ (Γuk−1)A) ◦

(
(Γuk−1)−1

A ◦ (Γuk−2)A
)
◦ · · · ◦

(
(Γu1)−1

A ◦ (Γu0)A
)

which is a “telescoping” composition that reduces to

(Γuk)−1
A ◦ (Γu0)A.

Similarly, we can expression (γ`)A ◦ · · · ◦ (γ1)A as
(

(Γt`)−1
A ◦ (Γt`−1)A

)
◦
(

(Γt`−1)−1
A ◦ (Γt`−2)A

)
◦ · · · ◦

(
(Γt1)−1

A ◦ (Γt0)A
)

which also reduces to
(Γt`)−1

A ◦ (Γt0)A.

However, uk = t` and u0 = t0, so that

(Γuk)−1
A ◦ (Γu0)A = (Γt`)−1

A ◦ (Γt0)A =⇒ (βk)A ◦ · · · ◦ (β1)A = (βk)A ◦ · · · ◦ (β1)A

Thus we have that our original diagram inM

(β1)A

(β2)A
(β3)A (βn)A

(v)A

(u1)A
(u2)A

· · ·

(w)A

(γ1)A

(γ2)A
(γ3)A

(γm)A

(t1)A
(t2)A

· · ·

is commutative. Therefore we have that parallel sequences of α-arrows are equal in M, as
desired. �

Finally, we use all of our previous work to prove Theorem 7.4.24. In this case, the proof
is simply the definition of our desired functor. We state the theorem here for the reader’s
convenience.
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Theorem 7.4.24 (Associator Coherence.). Let (M,⊗, I, α, λ, ρ) be a monoidal category. For
every object A, there exists a unique functor ΦA :WP M which agrees with the proxy map
(−)A on the objects and α-arrows.

To define this functor, we will (in this order) define the functor on (1) object, (2) α-arrows,
(3) general morphisms of WP, and then finally show that our definition preserves composition.
Objects. For a pure binary word w, we define ΦA(w) = (w)A.
Morphisms. (1) If β is an α-arrow, we define ΦA(β) = (β)A.

(2) Now we define our functor on a general morphism v w in WP. For convenience
denote this as ϕv,w : v w.

We know by Corollary 7.4.22 that there exist finitely many forward and backward
α-arrows γ1, . . . , γk such that

ϕv,w = γk ◦ · · · ◦ γ1.

Therefore, define

ΦA(ϕv,w) = Φ(γk ◦ · · · ◦ γ1) = (γk)A ◦ · · · ◦ (γ1)A.

By Proposition 7.4.26, we see that this definition is well-defined.
Note that this definition allows the functor to also be well-defined on identities, i.e., in
all instances, ΦA(1u) = 1uA .
We now show that this definition of our functor behaves under composition. Let ϕu,v :
u v and ϕv,w : v w be morphisms in WP. Then there exist sequences of α-arrows
β1, . . . , βk and γ1, . . . , γ` such that

ϕu,v = βk ◦ · · · ◦ β1 ϕv,w = γ` ◦ · · · ◦ γ1.

Then we can write

Φ(ϕv,w ◦ ϕu,v) = Φ(γ` ◦ · · · ◦ γ1 ◦ βk ◦ · · · ◦ β1)
= (γ`)A ◦ · · · ◦ (γ1)A ◦ (βk)A ◦ · · · ◦ (β1)A
= Φ(γ` ◦ · · · ◦ γ1) ◦ Φ(βk ◦ · · · ◦ β1)
= Φ(ϕv,w) ◦ Φ(ϕu,v)

Hence we see that our definition on morphisms behaves appropriately on composition, so
that Φ is in fact a functor.

We conclude this section by proving the Diamond Lemma, which we have now seen to play
a critical role in this proof.

Lemma 7.4.28 (Diamond Lemma). Let w be a pure binary word and suppose β1, β2 are two
forward α-arrows as below.
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w

w1 w2

β1 β2

There exists a pure binary word z and two γ1 : w1 z, γ2 : w2 z, with γ1, γ2 a composition
of forward α-arrows, such that for any monoidal category (M,⊗, I, α, λ, ρ) the diagram below
is commutative inM.

(w)A

(w1)A (w2)A

(z)A

(β1)A (β2)A

(γ1)A (γ2)A

is commutative.

As we said before, the above lemma is an existence result, so we emphasize this fact by
coloring the arrows, which we are asserting to exist, Green.

Proof. We will prove this using induction on the length of w = u⊗ v. Therefore, throughout
the proof, suppose the result is already true for all words of length less than that of w.

We proceed in a case-by-case basis, exhausting the possible forms of β1 and β2. For our
purposes, we will express w = u⊗ v. Whenever L(v) > 1, we write v = s⊗ t.

Let β1, β2 be forward α-arrows. Then β1 could be of the forms

αu,s,t 1u ⊗ γ1 γ1 ⊗ 1v

and β2 could be of the forms

αu,s,t 1u ⊗ γ2 γ2 ⊗ 1v.

with γ1, γ2 already forward α-arrows. Therefore, our cases for β1, β2, displayed in tuples, are
listed in the table below.

(β1, β2) αu,s,t 1u ⊗ γ2 γ2 ⊗ 1v
αu,s,t (αu,s,t, αu,s,t) (αu,s,t, 1u ⊗ γ2) (αu,s,t, γ2 ⊗ 1v)

1u⊗γ1 (1u ⊗ γ1, αu,s,t) (1u ⊗ γ1, 1u ⊗ γ2) (1u ⊗ γ1, γ2 ⊗ 1v)

γ1⊗1v (γ1 ⊗ 1v, αu,s,t) (γ1 ⊗ 1v, 1u ⊗ γ2) (γ1 ⊗ 1v, γ2 ⊗ 1v)

While there are 9 cases displayed above, we have pointed out via color the pairs of cases
which are logically equivalent to each other due to the symmetry of our problem. Therefore,
we actually have 6 cases to check We now proceed to the proof.
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Case 1: (αu,s,t, αu,s,t).
In this case, we have that β1 = β2, for which the statement is trivially true.

Case 2: (γ1 ⊗ 1v, 1u ⊗ γ2)
Suppose β1 = γ1 ⊗ 1v and β2 = 1u ⊗ γ2. Here, γ1 : u u′ and γ2 : v v′ for some pure
binary words u′, v′. Then we get the diagram

u⊗ v

u′ ⊗ v u⊗ v′

u′ ⊗ v′

1u⊗γ2γ1⊗1v

1u′⊗γ2 γ1⊗1v′

which commutes by the bifunctoriality of ⊗.

Case 3: (γ1 ⊗ 1v, γ2 ⊗ 1v)
Suppose β1 = γ1 ⊗ 1v and β2 = γ2 ⊗ 1v with γ1 : u u1 and γ2 : u u2 both forward
α-arrows. Then in this case we have the triangle below inM.

(u⊗ v)A

(u1 ⊗ v)A (u2 ⊗ v)A

(γ2)A⊗1(v)A(γ1)A⊗1(v)A

Note that the above diagram is the image of diagram
(u)A

(u1)A (u2)A

(γ2)A(γ1)A

under the functor (−)⊗ (v)A. As L(u) < L(u⊗v), we know by our induction hypothesis that
there exists a pure binary word z and a pair of composite, forward α-arrows σ1 : u1 z and
σ2 : u2 z such that the diagram below commutes inM.

(u)A

(u1)A (u2)A

(z)A

(γ2)A(γ1)A

(σ1)A (σ2)A

Therefore we can apply the functor (−)⊗(v)A on the above diagram to obtain the commutative
diagram below
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(u)A ⊗ (v)A

(u1)A ⊗ (v)A (u2)A ⊗ (v)A

(z)A ⊗ (v)A

(γ1)A⊗(1v)A(β2)A⊗(1v)A

(σ1)A⊗(1v)A (σ2)⊗(1v)A

which proves this case.

Case 4: (1u ⊗ γ1, 1u ⊗ γ2)
The next case is when β1 = 1u ⊗ γ1 and β2 = 1u ⊗ γ2 with γ1 : v v1 and γ2 : v v2.
However, this can be proved in a similar manner as the previous case using the induction
hypothesis and the functor (u)A ⊗ (−).
Case 5: (αu,s,t, γ2 ⊗ 1v)
Let β1 = αu,s,t, so that w = u ⊗ (s ⊗ t). Let β2 = γ2 ⊗ 1v = γ2 ⊗ 1s⊗t with γ2 : u u′ a
forward α-arrow. Then we will have the diagram inM

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u′ ⊗ (s⊗ t))A

((u′ ⊗ s)⊗ t)A

(γ2⊗(1s⊗1t))A(αu,s,t)A

((γ2⊗1s)⊗1t)A (αu′,s,t)A

which commutes inM by naturality of α.

Case 6: (αu,s,t, 1u ⊗ γ2)
Let β1 = αu,s,t, β2 = 1u ⊗ γ with γ a forward α-arrow with domain s ⊗ t. By the recursive
definition of a forward α-arrow, we have three possible cases for γ.

Case 6.1: γ = 1s ⊗ γ′
With γ = 1s ⊗ γ′ with γ′ : t t′ already a forward α-arrow, we have the diagram inM

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u⊗ (s⊗ t′))A

((u⊗ s)⊗ t′)A

(1u⊗(1s⊗γ))A(αu,s,t)A

((1u⊗1s)⊗γ)A (αu,s,t′ )A

which commutes inM by naturality of α.
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Case 6.2: γ = γ′ ⊗ 1t
If γ = γ′ ⊗ 1t with γ′ : s s′ already a forward α-arrow, we can create the diagram

(u⊗ (s⊗ t))A

((u⊗ s)⊗ t)A (u⊗ (s′ ⊗ t))A

((u⊗ s′)⊗ t)A

(1u⊗(γ′⊗1t))A(αu,s,t)A

((1u⊗γ′)⊗1t)A (αu,s′,t)A

which also commutes inM by naturality of α.
Case 6.3: γ = αs,p,q
The third case for γ is when γ = αs,p,q. In this case, we express w = u ⊗ (s ⊗ (p ⊗ q)). We
can then construct the diagram

(u⊗ (s⊗ (p⊗ q)))A

((u⊗ s)⊗ (p⊗ q))A (u⊗ ((s⊗ p)⊗ q))A

(((u⊗ s)⊗ p)⊗ q)A ((u⊗ (s⊗ p))⊗ q)A

(αu,s,p⊗q)A (1u⊗αs,p,q)A

(αu⊗s,p,q)A (αu,s⊗p,q)A

(αu,s,p⊗1q)A

which is always commutative inM. In this case, the word ((u⊗ s)⊗ p)⊗ q acts as our vertex
z which completes the diagram.

As we have exhausted all possible cases, we see that the statement is true for pure binary
words of rank k + 1 if it is true for all pure binary words with rank at most k. By induction,
the statement is true for all binary words of any rank, so that we have proved the theorem.

�
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Step Four: Binary Words
So far we have established a unique functor ΦA : WP M for each object A of any given
monoidal categoryM, and this functor grants us coherence in the associators between iterated
monoidal products of a single object. We now consider such monoidal products with the identity
I as well, so that we may say something about coherence with regard to the unitors λ and ρ in
a general monoidal category. Towards that goal, we now consider binary words (not just pure
binary words) and introduce some definitions.

Recall that L calculates the length of a binary word, or more informally, the number of x1’s
in a binary word. We now introduce a dual quantity which instead counts the number of x0

Definition 7.4.29. Let w be a binary word. Define the identity length of w, denoted E ,
recursively as follows.

• E(x0) = 1 and E(x1) = 0.

• E(u⊗ v) = E(u) + E(v).

Similarly to how L(−) counts the number of x1’s in a binary word, E(−) counts the number
of x0’s in a binary word.

Next, we introduce the following concept that will later on be key to our proof of Mac Lane’s
Coherence Theorem.
Definition 7.4.30. Let w be a binary word. We define the clean word derived from w,
denoted w, recursively as follows.

• We set x1 = x1.

• If L(w) = 0 (i.e., it has no instance of x1) then w = x0.

• Let u, v be binary words with L(u) = 0 and L(v) > 0. Then

u⊗ v = v ⊗ u = v

• Let u, v be binary words with L(u),L(v) > 0. Then u⊗ v = u⊗ v.
Note that for a pure binary word w, we have that w = w. Informally, the clean word

of a binary word of nonzero length is simply the pure binary word obtained by removing all
instances of the identity from its expression. In the case for a binary word with zero length, we
naturally define the clean word to be x0 .

Example 7.4.31. We offer some examples of clean words obtained from binary words.

Word Clean Word
x0 ⊗ (x0 ⊗ x0) x0

x0 ⊗ (x1 ⊗ x0) x1

(x1 ⊗ x0)⊗ x1 x1 ⊗ x1

((x1 ⊗ x0)⊗ x0)⊗ x1 x1 ⊗ x1

(x1 ⊗ x0)⊗ ((x1 ⊗ x0)⊗ x1) x1 ⊗ (x1 ⊗ x1)
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The above example also shows that two different binary words can have the same clean word.

Definition 7.4.32 (Monoidal Arrows). A forward monoidal arrow ofW is defined recursively
as follows.

• For any triple of binary words u, v, w, the morphisms

αu,v,w : u⊗ (v ⊗ w) −!∼ (u⊗ v)⊗ w
λu : x0 ⊗ u −!∼ u

ρu : u⊗ x0 −!∼ u

are, respectively, forward α-, λ-, and ρ-arrows. They are collectively defined to be
forward monoidal arrows.

• For any binary word u and forward monoidal arrow µ, the morphisms

1u ⊗ µ µ⊗ 1u

are forward monoidal arrows.

Finally, we say a backward monoidal arrow is the inverse of a forward monoidal arrow.

We also establish the following terminology to distinguish our α-arrows from our λ and ρ
arrows.
Definition 7.4.33. A forward unitor arrow is either a forward λ-arrow or a forward ρ-arrow.
Similarly, a backward unitor arrow is the inverse of a forward unitor arrow.

As we have already seen forward α-arrows, we provide examples of forward and backward
λ, ρ-arrows.

Example 7.4.34. Below we have a forward and backward λ-arrow.
x1 ⊗ ((x0 ⊗ x1)⊗ x1)

x1 ⊗ (x1 ⊗ x1)

1x1⊗(λx1⊗1x1 )

(x1 ⊗ x1)⊗ x1

x0 ⊗ ((x1 ⊗ x1)⊗ x1)

λ−1
(x1⊗x1)⊗x1

We also have forward and backward ρ-arrows below.

(x1 ⊗ x0)⊗ x1

x1 ⊗ x1

ρx1⊗1x1

x1 ⊗ (x1 ⊗ x1)

x1 ⊗ ((x1 ⊗ x1)⊗ x0)

1x1⊗ρ
−1
x1⊗x1

We now move onto proving some important lemmas regarding monoidal arrows that we will
use for the coherence theorem.
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The first three are quick, but have particular importance.
Lemma 7.4.35. Let w be a binary word, w 6= x0. Then E(w) = 0 if and only if w = w.

Note that w = x0 is the only case for which the above proposition is not true, since x0 = x0

but E(x0) 6= 0. Hence, our reasoning for excluding it (and it is not a case we will need to
concern ourselves with).

Proof. Suppose E(w) = 0, and let us prove the forward direction by induction on the length
of the word. Let us write w = u ⊗ v, suppose that the statement is true for all pure binary
words with length less than w. Observe that

w = u⊗ v = u⊗ v = u⊗ v = w.

where we used the induction hypothesis on u, v which have smaller length than w. Thus we
see that w = w.

Conversely, suppose w = w, w 6= x0, and suppose the statement is true for binary words
with length less than w. Write w = u ⊗ v. By the definition of a clean word, the only way
we can have w = w is if u, v are binary words with nonzero length. Therefore, if w = w we
see that

u⊗ v = u⊗ v.
Since u, v have smaller length than w, we may use the induction hypothesis to conclude that
E(u) = E(v) = 0. Hence, E(w) = 0, as desired. �

Lemma 7.4.36. Let w be a binary word. Suppose ι : w w′ is a forward unitor arrow. Then
E(w′) = E(w)− 1.

In other words, any unitor arrow always takes away exactly one identity.

Proof. We prove this by examining the possible cases for ι. Write w = u⊗v. As ι is a forward
unitor arrow, it has four possible forms.

(1) Suppose ι = λv : x0 ⊗ v v. As

E(v) = E(v) + E(x0)− 1 = E(v ⊗ x0)− 1

we see that the statement is satisfied in this case.

(2) If ι = ρu : u⊗ x0 u, we can use a similar argument as in (1) to prove the statement.

(3) Suppose ι = 1u ⊗ κ : u ⊗ v u ⊗ v′ where κ : v v′ is a forward unitor arrow for
which the statement is already true. Then E(v′) = E(v)− 1. Hence,

E(u⊗ v′) = E(u⊗ v)− 1.

Therefore the statement is satisfied for 1u ⊗ κ if it is true for κ.
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(4) If ι = κ ⊗ 1v : u ⊗ v u′ ⊗ v where κ is a forward unitor for which the statement is
already true, then we may prove this case by following a similar argument as in (3).

As we have examined all cases, we may conclude that for every forward unitor ι : w w′,
we have that E(w′) = E(w)− 1 as desired. �

Lemma 7.4.37. Let ι : w w′ be a forward unitor arrow. Then w = w′.

In other words, unitor arrows do not alter the particular format of a clean word.

Proof. First, observe that the result is trivial if L(w) = L(w′) = 0. Therefore, let w = u⊗ v
be such a binary word with E(w) > 0. Suppose the statement is true for binary words v such
that E(v) < E(w). Let ι : w w′ be a forward unitor arrow. By the recursive definition of
ι, our forward unitor arrow has four possible forms.

(1) Suppose ι = λv : x0 ⊗ v v. However, note that x0 ⊗ v = v, so that this case is true.

(2) If ι = ρu : u⊗ x0 u, then this case may be proven in a similar manner as case (1).

(3) Suppose ι = 1u ⊗ κ : u ⊗ v u ⊗ v′ where κ is a forward unitor arrow for which the
result is already true. Since L(u⊗ v) < 0, we have a few subcases.

Suppose L(v) > 0. Then by our assumption on κ, v = v′. Therefore, if L(u) = 0, we
see that

u⊗ v = v = v′ = u⊗ v′

which satisfies this case. If instead L(u) > 0, then

u⊗ v = u⊗ v = u⊗ v′ = u⊗ v′

which again satisfies the case.

Finally, suppose L(v) = 0. Then u⊗ v = u = u⊗ v′.
In all cases we see that u⊗ v = u⊗ v′ as desired.

(3) Our third case if when ι = κ⊗ 1v : u⊗ v u′ ⊗ v with κ a forward unitor for which
the result is already true. However, this case can be proved similarly as in case (2).

In all instances, we see that for a forward unitor arrow ι : w w′, we have that w = w′, as
desired. �

The following lemma is an important existence result that will be used in the next propo-
sition.
Lemma 7.4.38. Let w be a binary word with E(w) > 0. Then there exists a forward unitor
with domain w.

Proof. We prove this by induction on the total length of a binary word L(w) + E(w). Thus,
let w = u⊗v be a binary word with E(w) > 0 and suppose the statement is true for all binary
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words z with
L(z) + E(z) < L(w) + E(w).

Then we have a few cases for w.

(1) Suppose u = x0. Then we take the forward unitor λv : x0 ⊗ v v.

(2) Suppose v = x0. We may similarly take ρu : u⊗ x0 u, so that this case is satisfied.

(3) Suppose u, v 6= x0. Since E(w) > 1, either E(u) or E(v) > 0. Without loss of generality,
suppose E(u) > 0. Since

L(u) + E(u) = L(u) + E(u)

we may apply our induction hypothesis to conclude that there exists a forward unitor
ι : u u′ with domain u. Hence, the morphism

ι⊗ 1v : u⊗ v u′ ⊗ v

is a forward unitor with domain u⊗ v = w.

As we have evaluated all cases, we see that the statement is true for all binary words as
desired. �

The previous four lemmas now give rise to the following proposition.
Proposition 7.4.39. Let w be a binary word with E(w) = `. Then there exists a composable
sequence of `-many forward unitor arrows ι`, · · · , ι1 as below:

ι` ◦ · · · ◦ ι1 : w w′.

Moreover, for every such chain, we have that w′ = w.

Proof. To prove existence of such a chain for every binary word with nonzero identity length,
we may proceed by induction. Let w be a binary word with E(w) > 0, and suppose that
such a chain exists for binary words v with E(v) < E(w). Then by Lemma 2.5.10, there
exists a forward unitor ι : w w′. By Lemma 2.5.8, E(w′) = E(w)− 1, so by our induction
hypothesis, there exists a chain of forward unitor arrows

ι`−1 ◦ · · · ◦ ι1 : w′ w′.

Hence, ι ◦ ι`−1 ◦ · · · ◦ ι1 : w w is a forward chain of unitors with initial domain w, which
proves existence.

To prove that w′ = w, denote the domain and codomain of our unitors ιi : wi−1 wi,
so that w0 = w. By Lemma 2.5.9, for each i we have that wi−1 = wi. Hence w = w`. By
Lemma 2.5.8, we have that E(wi) = E(wi−1)− 1. Therefore,

E(w`) = E(w)− ` = 0.
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However, by Lemma 2.5.7, we see that this implies w` = w` = w. Hence we see that

ι` ◦ · · · ◦ ι : w w

as desired. �

The previous proposition immediately implies the next.
Proposition 7.4.40. Let w be a binary word with L(w) > 0. Then there exists a sequence of
forward monoidal arrows from w to w(n).

Proof. By Lemma 7.4.38, we have a sequence of forward unitor arrows from w to w.

µk ◦ · · · ◦ µ1 : w w

Since w is a pure binary word, we can then use Proposition 7.4.21 to guarantee a sequence
of forward α-arrows from w to w(n).

β` ◦ · · · ◦ β1 : w w(n)

Composing these morphisms then gives us our desired monoidal arrow:

β` ◦ · · · ◦ β1 ◦ µk ◦ · · · ◦ µ1 : w w(n)

so that such a sequence of forward monoidal arrows exists. �

And the previous proposition gives us the following corollary.
Corollary 7.4.41. Every morphism in W can be expressed as a composition of a sequence of
forward and backward monoidal arrows.

Proof. The proof is the same exact proof as that of Corollary 7.4.22. We use the previous
proposition with the fact that W is a thin category to conclude this. �
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Step Five: Coherence for A⊗n for ρ, λ

In this section, we extend the work we’ve completed with the associators to now include the
unitors. We will obtain a theorem similar to Theorem 7.4.24. To even state the theorem, we
need to introduce a new definition.

Definition 7.4.42. Let (M,⊗, I, α, λ, ρ) be a monoidal category. For each object A in M,
we define the general proxy map of A to be the partial functor (−)A :W M defined as
follows.
Objects We define the general proxy map on objects recursively.

• We set (x0)A = I and (x1)A = A

• For a binary word w = u⊗ v we set:

(w)A = (u⊗ v)A = (u)A ⊗ (v)A

Morphisms We define the partial functor only on α-, λ-, and ρ-arrows. This is also done
recursively.

• For binary words u, v, w, we set:

(αu,v,w)A = α(uA,vA,wA) : uA ⊗ (vA ⊗ wA) −!∼ (uA ⊗ vA)⊗ wA
(λu)A = λuA : I ⊗ uA −!∼ uA

(ρu)A = ρuA : uA ⊗ I −!∼ uA

• For a more general α, λ, or ρ-arrow of the form 1u ⊗ β or β ⊗ 1u we set:

(1u ⊗ β)A = 1uA ⊗ (β)A
(β ⊗ 1u)A = (β)A ⊗ 1uA

Before concluding this definition, we note that there is some potential ambiguity in our definition
on the unitors. This is because sometimes a forward unitor arrow inW can be expressed in two
ways. The reader may check that all possible cases for ambiguity are the three cases below.

x0 ⊗ x0

x0

λx0ρx0

x0 ⊗ (x0 ⊗ v)

x0 ⊗ v

1x0⊗λv λ(x0⊗v)

(u⊗ x0)⊗ x0

u⊗ x0

ρ(u⊗x0)ρu⊗1x0

As parallel morphisms in W , they are equal. Therefore, in order for our definition to be well-
defined, we need that the corresponding pairs of morphisms
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I ⊗ I

I

λIρI

I ⊗ (I ⊗ (v)A)

I ⊗ (v)A

1I⊗λ(v)A λ(I⊗(v)A)

((u)A ⊗ I)⊗ I

(u)A ⊗ I

ρ(u)A⊗1I ρ((u)A⊗I)

to be equal in M. One can show that these morphisms are equal in M using the unitor
diagrams ??, ??, and ??.

Regarding our notation, note that we are recycling the same notation from the proxy map to
the general proxy map. This is because the only difference between the two is that the general
proxy map is simply an extension of the proxy map which is now defined on identity elements
x0 and unitors.

The goal of this section is to prove the following theorem, which can be thought of as an
extension of Theorem 7.4.24.

Theorem 7.4.43 (Coherence in Unitors). Let (M,⊗, I, α, λ, ρ) be a monoidal category. For
each object A, there exists a unique strict monoidal functor ∆A :W M which agrees with
the general proxy map on objects and monoidal morphisms.

The above theorem is implied by Proposition 7.4.44 (stated below), in the same way that
Theorem 7.4.24 followed from Proposition 7.4.26.
Proposition 7.4.44. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and consider two binary
words v, w. Let µ1, . . . , µk and η1, . . . , η` be monoidal arrows with:

µk ◦ · · · ◦ µ1, η` ◦ · · · ◦ η1 : v w

Then (µk)A ◦ · · · ◦ (µ1)A = (η`)A ◦ · · · ◦ (η1)A inM.

The above proposition is implied by Proposition 7.4.45 (stated below), in the same way that
Proposition 7.4.26 followed from Proposition 7.4.27
Proposition 7.4.45. Let (M,⊗, I, α, λ, ρ) be a monoidal category, and consider a binary word
w. Let µ1, . . . , µk and η1, . . . , η` be forward monoidal arrows with:

µk ◦ · · · ◦ µ1, η` ◦ · · · ◦ η1 : w w(n)

Then (µk)A ◦ · · · ◦ (µ1)A = (η`)A ◦ · · · ◦ (η1)A inM.

Once we have the above proposition, we can prove Proposition 7.4.44, and hence our desired
theorem, using the same technique as in in the Proof of Proposition 7.4.26.

We briefly recall such techniques: We consider two parallel chains of monoidal arrows. We
then connect each object in the chain to w(n) with a chain of forward monoidal arrow (recall
that a chain must exist for each object). We then have a bunch of adjacent triangles with apex
w(n) and we can conclude via the Proposition 7.4.45 that each such triangle commutes. We
then conclude that the original two parallel chains form a commutative diagram inM. Thus,
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our two chains have the same composite inM. This then proves Proposition 7.4.44, which then
grants us Theorem 7.4.43.

As our goal has been reduced to proving Proposition 7.4.45, we prove this proposition using
the following two results.

The first result is the following proposition.
Proposition 7.4.46 (Arrow Reorganization). Let µ1, . . . , µk be composable forward monoidal
arrows with `-many unitor arrows. Then there exist composable forward unitor arrows η1, . . . , η`
and forward α-arrows η`+1, . . . ηm such that, for any monoidal category M with object A, we
have that

(µk)A ◦ · · · ◦ (µ1)A =
Forward α′s︷ ︸︸ ︷

(ηm)A ◦ · · · ◦ (η`+1)A ◦
Unitors in front︷ ︸︸ ︷

(η`)A ◦ · · · ◦ (η1)A

inM.

The above proposition basically states that monoidal arrows can be reorganized in a partic-
ular way with all of the unitors in the front. The second result that we need in order to prove
Proposition 7.4.45 is the following proposition.
Proposition 7.4.47 (Unitor-Chain Equivalence). Let w be a binary word with nonzero length
and with E(w) = k. Suppose µ1, . . . , µk and η1, . . . , ηk are a composable sequence of forward
unitor arrows:

µk ◦ · · · ◦ µ1, ηk ◦ · · · ◦ η1 : w w

Then (µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η1)A inM.

For the sake of organization, we will assume the validity of these two results now so that
we may prove 7.4.45 We will then prove these two results in the next section.

Proof of Proposition 7.4.45 Hello!
Let

µn1 ◦ · · · ◦ µ1, ηn2 ◦ · · · ◦ η1 : w w(n)

be any two composites of forward monoidal arrows from w to w(n). Since E(w) = k

and E(w(n)) = 0, we know by Lemma 7.4.36 that there are exactly k-many forward uni-
tors in each expression. We can then use Proposition 7.4.46 to find forward unitor arrows
γ1, . . . γk, δ1, . . . , δk and forward α-arrows γk+1, . . . , γm1 , δk+1, . . . , δm2 such that:

(µn1)A ◦ · · · ◦ (µ1)A =
Forward α′s︷ ︸︸ ︷

(γm1)A ◦ · · · ◦ (γk+1)A ◦
Unitors in front︷ ︸︸ ︷

(γk)A ◦ · · · ◦ (γ1)A

(ηn2)A ◦ · · · ◦ (η1)A =
Forward α′s︷ ︸︸ ︷

(δm2)A ◦ · · · ◦ (δk+1)A ◦
Unitors in front︷ ︸︸ ︷

(δk)A ◦ · · · ◦ (δ1)A

By Proposition 7.4.39, we know that the domain of the composition of our unitors is w:

γk ◦ · · · ◦ γ1, δk ◦ · · · ◦ δ1 : w w

Diagramatically, our situation is displayed below.
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(w)A

(r1)A (s1)A

... ...

(w)A

(rk+1)A (sk+1)A

... ...

(
w(n)

)
A

(γ1)A (δ1)A

(γ2)A (δ2)A

(γk)A (δk)A

(γk+1)A (δk+1)A

(γk+2)A (δk+2)A

(γm1 )A (δm2 )A

By Proposition 7.4.50, the upper half of this diagram (above (w)A) must commute. By
Proposition 7.4.26, the bottom half of this diagram (below (w)A), which consists entirely
of forward α-arrows, must commute. Therefore, the entire diagram commutes, and this
completes the proof. �
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Step Six: Arrow Reorganization and Unitor Chain Equivalence
We now discuss what it takes to prove the Arrow Reorganization and Unitor-Chain Equivalence
results.

To prove the Arrow Reorganization result, it suffices to prove a special case which is precisely
stated in the following lemma.
Lemma 7.4.48 (Associator-Unitor Swap.). Let µ : w w1 be a forward α-arrow and let
ι : w1 w2 be a forward unitor arrow. Then either one of the following two situations must
occur.

• There exists a binary word z, a forward unitor arrow ι′ : w z and a forward α-arrow
µ′ : z w2 such that, for any monoidal categoryM, the diagram below commutes.

(w)A

(w1)A (z)A

(w2)A

(µ)A (ι′)A

(ι)A (µ′)A

• There exists a forward unitor arrow ι′ : w w2 such that, for any monoidal category
M, the diagram below commutes.

(w)A

(w1)A (w2)A

(µ)A (ι′)A

(ι)A

As before, the above lemma is an existence result, so we emphasize this fact by coloring the
arrows that we are asserting to exist Green.

Assuming the above lemma, we prove the Arrow Reorganization Proposition.

Proof of Arrow Reorganization (Proposition 7.4.46). We summarize rather than
introducing too much notation, since the proof strategy is rather simple. Consider a sequence
of monoidal arrows µ1, . . . , µk. Suppose µj is a unitor arrow. If µj−1 is an α-arrow, we perform
an associator-unitor swap, obtaining a new chain whose composite is the same inM. If not,
we leave it alone and check the other unitor arrows.

We perform this reorganization, swapping associator arrows and unitor arrows one at a
time, until we have a sequence of morphisms in which no unitor arrow is preceded by an
α-arrow (and hence all unitors begin at the front of our chain). The repeated application of
the Associator-Unitor swap guarantees that the composite of this new chain is equal to the
composite of our original chain. �
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We now understand how to prove the Arrow Reorganization Proposition: it relies critically
on the Associator-Unitor Swap. As we now understand how the Associator-Unitor swap is used,
we offer its proof.

Proof of Associator-Unitor Swap (Lemma 7.4.48). We prove this using a case-by-
case basis. For our proof, we write w = u⊗ v. Whenever L(v) > 1, we write w = u⊗ (s⊗ t).
If L(t) > 1, we will write w = u⊗ (s⊗ (p⊗ q)).

Since µ is a forward α-arrow, it could be of the forms

α 1u ⊗ η1 η1 ⊗ 1v

with η1 a forward α-arrow. Since ι is a forward unitor arrow, it could be of the forms

λv ρu 1u ⊗ η2 η2 ⊗ 1v

with η2 either a forward unitor arrow. We display our table below, this time coloring the
entries in order to group together similar cases.

(µ, ι) 1u ⊗ η2 η2 ⊗ 1v λv ρu

α (αu,s,t, 1u ⊗ η2) (αu,s,t, η2 ⊗ 1v) (αu,s,t, λv) (αu,s,t, ρu)

1u⊗η1 (1u ⊗ η1, 1u ⊗ η2) (1u ⊗ η1, η2 ⊗ 1v) (1u ⊗ η1, λv) (1u ⊗ η1, ρu)

η1⊗1v (η1 ⊗ 1v, 1u ⊗ η2) (η1 ⊗ 1v, η2 ⊗ 1v) (η1 ⊗ 1v, λv) (η1 ⊗ 1v, ρu)

Case 1: (αu,s,t, 1u⊗s ⊗ η2)
First consider µ = αu,s,t : u⊗ (s⊗ t) (u⊗ s)⊗ t and ι = 1u⊗s⊗ η2 with η2 : t t′ either a
forward λ or ρ arrow. We select the forward unitor arrow 1uA⊗ (1sA⊗ (η2)A) and the forward
α-arrow αuA,sA,t′A to obtain the diagram

uA ⊗ (sA ⊗ tA)

(uA ⊗ sA)⊗ tA uA ⊗ (sA ⊗ t′A)

(uA ⊗ sA)⊗ t′A

αu,s,t 1uA⊗(1sA⊗(η2)A)

(1uA⊗1sA )⊗(η2)A αuA,sA,t
′
A

which commutes by naturality of α.
Case 2: (αu,s,t, η2 ⊗ 1t).
In this case, µ = αu,s,t : u⊗ (s⊗ t) (u⊗ s)⊗ t, while ι = η2 ⊗ 1t. Hence, η2 must act on
(u⊗ s). With that said, η2 must be of the form

λs ρu τ ⊗ 1s 1u ⊗ σ
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with τ : u u′ and σ : s s′ either forward λ or ρ arrows. Thus we check each of these
cases are satisfied.
Case 2.1: η2 = λsA
In this case, u = I. We can construct a triangular diagram by appending λsA⊗tA : I ⊗ (sA ⊗
tA) sA ⊗ tA as below.

I ⊗ (sA ⊗ tA)

(I ⊗ sA)⊗ tA sA ⊗ tA

αI,sA,tA λsA⊗tA

λsA⊗1tA

which commutes inM by Proposition ??.
Case 2.2: η2 = ρu
In this case, sA = I. We can append the morphism 1uA ⊗ λtA : uA ⊗ (I ⊗ tA) uA ⊗ tA to
create a triangular diagram as below.

uA ⊗ (I ⊗ tA)

(uA ⊗ I)⊗ tA uA ⊗ tA

αuA,I,tA 1uA⊗λtA

ρuA⊗1tA

The above diagram is guaranteed to commute by unitor-axiom (Diagram ??) in any monoidal
categoryM.
Case 2.3: η2 = τ ⊗ 1s
In this case, η2 = τ ⊗ 1s with τ a forward λ or ρ-arrow. We can first apply the forward arrow
τ ⊗ (1sA ⊗ 1tA) followed by αu′A,sA,tA to obtain the diagram

uA ⊗ (sA ⊗ tA)

(uA ⊗ sA)⊗ tA u′A ⊗ (sA ⊗ tA)

(u′A ⊗ sA)⊗ tA

αuA,sA,tA τ⊗(1sA⊗1tA )

(τ⊗1sA )⊗1tA
αu′

A
,sA,tA

which commutes by naturality of α.
Case 2.4: η2 = 1u ⊗ σ. This case is nearly identical to the previous, creating a desired
diagram which commutes by naturality of α.

This proves all of our cases for when µ = αuA,sA,tA and ι = (η2)A ⊗ 1tA , and so we move
onto our other cases.
Case 3: (αu,s,t, λt)
This case cannot happen, since we cannot apply λ : x0 ⊗ t x0 after αu,s,t : u⊗ (s⊗ t)
(u⊗ s)⊗ t as u⊗ s 6= x0 for any binary words u, s.
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Case 4: (αu,s,t, ρu⊗s)
In this case, we’ll have that µ = αuA,sA,tA and ι = ρuA⊗sA . This implies that tA = I. We can
then append the forward ρ-arrow 1uA ⊗ ρsA to obtain the diagram

uA ⊗ (sA ⊗ I)

(uA ⊗ sA)⊗ I uA ⊗ sA

αuA,sA,I 1uA⊗ρsA

ρuA⊗sA

which we know commutes due to Proposition ??.
Case 5: (1u⊗η1, 1u⊗η2). In this case µ = 1uA⊗ (η1)A and ι = 1uA⊗ (η2)A with η1 a forward
α-arrow and η2 either a forward λ or ρ-arrow. We can prove this case by induction.

Suppose the statement is true for word of length less than n, and let w = u⊗v be a binary
word of length n. Then we have the diagram on the left

uA ⊗ vA

uA ⊗ v′A

uA ⊗ v′′A

1uA⊗(η1)A

1u⊗(η2)A

vA

v′A

v′′A

(η1)A

(η2)A

which is the image of the diagram on the right under the functor uA ⊗ (−). By induction,
there exists either a binary word z, and a forward λ or ρ arrow η′ : vA z and a forward
α-arrow η′′ : z v′′A such that the diagram below commutes inM.

vA

v′A z

v′′A

(η1)A (η′)A

(η2)A (η′′)A

We can then take the image of this under the functor uA ⊗ (−) to obtain the commutative
diagram below.

uA ⊗ vA

uA ⊗ v′A uA ⊗ z

uA ⊗ v′′A

1uA⊗(η1)A 1uA⊗(η′)A

1uA⊗(η2)A 1uA⊗(η′′)A
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As 1uA ⊗ (η′)A is a forward λ or ρ arrow since (η′)A is, and since 1uA ⊗ (η′′)A is a forward
α-arrow since (η′′)A is, we have that the case must be true for all words by induction.
Case 6: (1u ⊗ η1, η2 ⊗ 1v′)
In this case, µ = 1uA ⊗ (η1)A with η1 : v v′ a forward α-arrow, and ι = (η2)A ⊗ 1v′ with
η2 : u u′ either a forward λ or ρ arrow. We can use the forward λ or ρ arrow (η2)A ⊗ 1vA
followed by the α-arrow 1u′A ⊗ (η1)A to obtain the diagram below.

uA ⊗ vA

uA ⊗ v′A u′ ⊗ v

u′A ⊗ v′A

1uA⊗(η1)A (η2)A⊗1vA

(η2)A⊗1v′
A

1u′
A
⊗(η1)A

The above diagram commutes by functoriality of ⊗, completing this case.
Case 7: (1u ⊗ η1, λv′)
In this case we’ll have µ = 1u ⊗ η1 with η1 a forward α-arrow and ι = λv′ . This then implies
that u = I. We can then append the λ-arrow λvA followed by the α-arrow (η1)A : vA v′A
to obtain the diagram

I ⊗ vA

I ⊗ v′A vA

v′A

1I⊗(η1)A λvA

λv′
A

(η1)A

which commutes by naturality of λ.
Case 8: (1u ⊗ η1, ρu)
This case cannot happen, since to apply ρu after 1u ⊗ η1 implies that the codomain of η1 is
x0, which is not possible if η1 is an α-morphism.
Case 9: (η1 ⊗ 1v, 1u ⊗ η2)
Equivalent to Case 5.
Case 10: (η1 ⊗ 1v, η2 ⊗ 1v)
Equivalent to Case 6.
Case 11:(η1 ⊗ 1v, λv)
This case cannot happen, since to apply λv after η1 ⊗ 1v implies that the codomain of η1 is
x0, which is not possible for an α-arrow.
Case 12: (η1 ⊗ 1v, ρu)
In this case, we have that µ = (η1)A ⊗ 1vA and η2 = ρuA . This implies that vA = I. We can
then append the forward ρ arrow ρuA followed by the forward α-arrow (η1)A to the diagram
to obtain
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uA ⊗ I

u′A ⊗ I uA

u′A

(η1)A⊗1vA ρuA

rhou′
A

(η1)A

which commutes by naturality of ρ.
This proves all the cases, which completes the proof. �

Thus we have proven the Associator-Unitor Swap. Our final task is to prove the Unitor-
Chain Equivalence. To do so, it suffices to prove the following lemma.
Lemma 7.4.49. (Unitor Diamond Lemma.) Let w be a binary word, and µ1, µ2 a pair of
forward unitor arrows as below.

w

w1 w2

µ1 µ2

There there exists a binary word z and a pair of forward unitor arrows η1 : w1 z, η2 : w2 z

such that for any monoidal category (M,⊗, I, α, λ, ρ), the diagram below is commutative in
M.

(w)A

(w1)A (w2)A

(z)A

(µ1)A (µ2)A

(η1)A (η2)A

As before, we color the arrows which we are asserting to exist Green.

Proof. To prove this, we do a case-by-case basis again. In general, we will write w = u ⊗ v,
and if L(v) > 1, we write w = u⊗ (s⊗ t).

Now since µ1, µ2 are forward unitor arrows, µ1 could be of the form

1u ⊗ η1 η1 ⊗ 1v λv ρu

while µ2 could be of the form

1u ⊗ η2 η2 ⊗ 1v λv ρu
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with η1, η2 both forward unitor arrows. Therefore, our possible cases are as follows. We
could have µ1 = µ2. Or, we could have any of the cases below. The paired-coloring indicates
logically equivalent cases due to the symmetry of our problem.

(β1, β2) 1u ⊗ η2 η2 ⊗ 1v λv ρu

1u⊗η1 (1u ⊗ η1, 1u ⊗ η2) (1u ⊗ η1, η2 ⊗ 1v) (1u ⊗ η1, λv) (1u ⊗ η1, ρu)

η1⊗1v (η1 ⊗ 1v, 1u ⊗ η2) (η1 ⊗ 1v, η2 ⊗ 1v) (η1 ⊗ 1v, λv) (η1 ⊗ 1v, ρu)

λv (λv, 1u ⊗ η2) (λv, η2 ⊗ 1v) (λv, λv) (λv, ρu)

ρu (ρu, 1u ⊗ η2) (ρu, η2 ⊗ 1v) (ρu, λv) (ρu, ρu)

Since we’ve already implemented this case-by-case proof strategy several times, we will
point out the cases which we’ve seen before, and take care of the cases that are new.
Case 1: (1u ⊗ η1, 1u ⊗ η2) This case can be proven by induction on total length L(w)+E(w),
using a similar argument as in Case 3 of Lemma 7.4.28.

Case 2: (1u ⊗ η1, η2 ⊗ 1v) This case can be proven via functoriality, in a similar manner
as Case 2 of Lemma 7.4.28.

Case 3: (1u ⊗ η1, λv).
With µ1 = 1u ⊗ η1 and µ2 = λv, denote η1 : v v′. In this case, we can use the morphisms
λ(v′)A and η1 to obtain the diagram

I ⊗ (v)A

I ⊗ (v′)A v

v′

1I⊗η1 λ(v)A

λ(v′)A
η1

which commutes by naturality of λ.
Case 5: (1u ⊗ η1, ρu).
With µ1 = 1u⊗ η1, µ2 = ρu, note that the only choice for η1 is η1 = 1x0 . However, there is no
unitor arrow with domain x0, so this does not result in a valid case for us to consider.
Case 6: (η1 ⊗ 1v, λv).
With µ1 = η1 ⊗ 1v, µ2 = λv, note that the only choice for η1 is again 1x0 . Once again, there
is no unitor arrow with domain x0, so this is also not a valid case that we need to consider.
Case 7: (η1 ⊗ 1v, ρu).
With µ1 = η1 ⊗ 1v, µ2 = ρu, we can use the morphisms ρ(u′)A and η1 to obtain

(u)A ⊗ I

(u′)A ⊗ I (u)A

(u′)A

η1⊗1I ρ(u)A

ρ(u′)A
η1
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which commutes by naturality of ρ.
Case 8: (λv, λv). In this case, we see that µ1 = µ2, so that the statement is trivially

satisfied in this case.
With all cases verified, we see that the statement must be true for all binary words, as

desired. �

We now show how this proves the Unitor-Chain Equivalence, which we restate for the readers
convenience.
Proposition 7.4.50 (Unitor-Chain Equivalence). Let w be a binary word with nonzero length
and with E(w) = k. Suppose µ1, . . . , µk and η1, . . . , ηk are forward unitors and that:

µk ◦ · · · ◦ µ1, ηk ◦ · · · ◦ η1 : w w

Then (µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η1)A inM.

Proof. We prove this by induction on E(w). Suppose the result is true for binary words v with
E(v) < E(w), and consider two composable chains of forward unitors µ1, . . . , µk, η1, . . . , ηk as
described above. We seek to show that the diagram

(w)A

(u1)A (v1)A

(w)A

(µ1)A (η1)A

(µk)A◦···◦(µ2)A (ηk)A◦···◦(η2)A

is commutative inM. By the Unitor Diamond Lemma, there exists a binary word z and two
forward unitors ι1 : u z and ι2 : v z such that

(w)A

(u1)A (v1)A

(z)A

(µ1)A (η1)A

(ι1)A (ι2)A

is commutative in M. Now, by Lemma 7.4.37, we have that z = w. By Lemma 7.4.36,
E(z) = k−2. Hence, by Proposition 7.4.39, there exists a chain of forward unitors ν1, . . . , νk−2

such that νk−2 ◦ · · · ◦ ν1 : z w. Our situation is displayed below. For clarity, we suppress
νk−2 ◦ · · · ◦ ν1 : z w in the diagram below.
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(w)A

(u1)A (v1)A

(z)A

(w)A

(µ1)A (η1)A

(ι1)A

(µk)A◦···◦(µ2)A

(ι2)A

(ηk)A◦···◦(η2)A

By Lemma 7.4.36, we know that E(u1), E(v1) < E(w). Therefore, we may apply our induction
hypothesis to conclude that the lower left and lower right triangles must commute. As the
original upper square commutes by the Unitor Diamond Lemma, this implies that

(µk)A ◦ · · · ◦ (µ1)A = (ηk)A ◦ · · · ◦ (η2)A

as desired. �

At this point, we have formally filled in all of the potential gaps in the proof of Theorem
7.4.43. We have completed the hard work required to prove Mac Lane’s Coherence Theorem.
We will use the next section to see how our previous results immediately apply our desired
coherence result.
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Step Seven: Proving the Main Theorem

At this point we have proven coherence in associators and unitors, but only when considering
iterated monoidal products of a single object. We have not yet achieved our desired result,
which should say something about more general monoidal products with different objects in
the expression. However, our previous work quickly implies our desired theorem. We first
introduce a definition and perform a clever trick.

In what follows, we let 1 denote the terminal category whose sole object is denoted •.
Definition 7.4.51. Let (M,⊗, I) be a monoidal category. Define the iterated functor cat-
egory1 of M, denoted as It(M), to be the category where:
Objects. Functors F :Mn M for all n = 0, 1, 2, . . . When n = 0, we letM0 = 1.
Morphisms. Natural transformations η : F G between such functors.

We will give this category a monoidal structure. Towards that goal, we introduce the
following bifunctor

� : It(M)× It(M) It(M)

whose behavior we describe on objects and morphisms as follows.
On objects. For two functors F :Mn M, G :Mm M, we define the functor F �G :

Mn+m M pointwise as

(F �G)(A1, . . . , An+m) = F (A1, . . . , An)⊗G(An+1, . . . , An+m)

where ⊗ is the monoidal product ofM.
On morphisms. Let F1, G1 :Mn M and F2, G2 :Mm M. Given natural transforma-

tions
η : F1 G1 µ : F2 G2

we define the natural transformation η � µ : F1 �G1 F2 �G2 pointwise as

(η � µ)(A1,...,An+m) = (η)(A1,...,An) ⊗ (µ)(An+1,...,An+m)

The above bifunctor is what allows us to regard It(M) as a monoidal category. This is
more precisely stated in the following lemma.
Lemma 7.4.52. Let (M,⊗, I, α, λ, ρ) be a monoidal category. Then

(It(M),�, c,α,λ,ρ)

is a monoidal category where

• The monoidal product is the bifunctor � : It(M)× It(M) It(M)

• The identity object is the functor c : 1 M, where c(•) = I

1The notation of this category is due to Mac Lane, but he did not supply a name for this category. So I
made one up. Today, this construction is known as an endomorphism operad.



302 Chapter 7. Monoidal Categories

• For functors Fj :Mij M, j = 1, 2, 3, the associator

αF1,F2,F3 : F1 � (F2 � F3) (F1 � F2)� F3

is the natural transformation defined pointwise for each (A1, . . . , Ai1+i2+i3) ∈ M(i1+i2+i3)

as
(αF1,F2,F3)(A1,...,Ai1+i2+i3 ) = α(F (A1,...,Ai1 ),F (Ai1+1,...Ai1+i2 ),F (Ai1+i2+1,...,Ai1+i2+i3 ))

• For a functor F :Mn M, the left unitor λ : c�F F is the natural transformation
defined pointwise for (•, A1, . . . , An) ∈ 1×Mn as

(λF )(•,A1,...,An) = λF (A1,...,An)

while the right unitor ρ : F � c F is the natural transformation defined similarly as

(ρF )(A1,...,An,•) = ρF (A1,...,An)

It is simple to check that these satisfy the axioms of a monoidal category. We now reach
the final theorem.

Theorem 7.4.53 (Coherence Theorem for Monoidal Categories.). For every monoidal category
M, there exists a unique, strict monoidal functor

Φid :W It(M)

where Φid(x1) = id :M M.

Proof. As (It(M),�, c) is a monoidal category by Lemma 7.4.52, the theorem follows by a
simple application of Theorem 7.4.43 to this monoidal category. �

A reader might be wondering: How does the above theorem grant us coherence? Let us first
investigate the behavior of this functor.

Under the functor, the morphism in W

x1 ⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1
αx1,x1,x1

is mapped by Φid to the natural transformation between the functors in It(M)

id�(id� id) (id� id)� id
αid,id,id

and, as functors fromM3 M, we may substitute anyA,B,C to obtain a natural isomorphism

αA,B,C : A⊗ (B ⊗ C) (A⊗B)⊗ C

inM. Next, we know that functors preserve diagrams. Therefore, our commutative pentagon
diagram in W
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x1 ⊗ (x1 ⊗ (x1 ⊗ x1)) (x1 ⊗ x1)⊗ (x1 ⊗ x1) (x1 ⊗ x1)⊗ x1)⊗ x1

x1 ⊗ ((x1 ⊗ x1)⊗ x1) (x1 ⊗ (x1 ⊗ x1))⊗ x1

is mapped by Φid to a commutative diagram of natural transformations in It(M) between the
functors below

id�(id�(id� id)) (id� id)� (id� id) ((id� id)� id)� id

id�((id� id)� id) (id�(id�) id)� id

and as the above functors are of the formM4 M, we may substitute any A,B,C,D ∈ M
to obtain the commutative diagram

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

1A⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗1D

inM.

So far, our functor makes sense. Moreover, we already knew that the above pentagon
commutes for all A,B,C,D ∈M. Thus, what about diagram ???

Again, functors preserve diagrams. Therefore, the commutative diagram in W (see next
page) is mapped by Φid to the commutative diagram of natural transformations in It(M)
between functors (see second page) and as functors from M5 M, we may substitute any
A,B,C,D,E to obtain the commutative diagram inM (on the third page).
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Front. (Note that the product ⊗ in W has been suppressed).

Back.

x1((x1x1)(x1x1))

x1(((x1x1)x1)x1) • (x1(x1x1))(x1x1)

x1((x1(x1x1))x1) ((x1x1)x1)(x1x1)
• •

(x1((x1x1)x1))x1 ((x1(x1x1))x1)x1

•

(x1(x1(x1x1)))x1 (((x1x1)x1)x1)x1

((x1x1)(x1x1))x1

1x1⊗αx1x1,x1,x1 αx1,x1x1,x1x1

αx1,x1(x1x1),x1

αx1,x1,x1⊗(1x1⊗1x1 )

αx1(x1x1),x1,x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1x1x1,x1 α(x1x1)x1,x1,x1

αx1,x1x1,x1⊗1x1

(αx1,x1,x1⊗1x1 )⊗1x1(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1,x1x1⊗1x1 αx1x1,x1,x1⊗1x1

x1((x1x1)(x1x1))

(x1(x1x1))(x1x1) x1(x1(x1(x1x1))) x1(((x1x1)x1)x1)

((x1x1)x1)(x1x1) x1((x1(x1x1))x1)

(x1x1)(x1(x1x1)) x1(x1((x1x1)x1)

• •
(x1x1)((x1x1)x1)

(((x1x1)x1)x1)x1 (x1(x1(x1x1)))x1

((x1x1)(x1x1))x1

1x1⊗αx1x1,x1,x1αx1,x1x1,x1x1

αx1,x1,x1⊗(1x1⊗1x1 )

1x1⊗αx1,x1,x1x1

αx1,x1,x1(x1x1) 1x1⊗(1x1⊗αx1,x1,x1 )

α(x1x1)x1,x1,x1

(1x1⊗αx1,x1,x1 )⊗1x1

αx1,x1x1x1,x1

αx1x1,x1,x1x1

(1x1⊗1x1 )⊗αx1,x1,x1

1x1⊗αx1,x1x1,x1

αx1,x1,(x1x1)x1

αx1x1,x1x1,x1

αx1,x1,x1x1⊗1x1αx1x1,x1,x1⊗1x1
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Front. (Note that the product � and the associators in It(M) are suppressed.)

Back.

id((id id)(id id))

id(((id id) id) id) • (id(id id))(id id)

id((id(id id)) id) ((id id) id)(id id)
• •

(id((id id) id)) id ((id(id id)) id) id
•

(id(id(id id))) id (((id id) id) id) id

((id id)(id id)) id

id((id id)(id id))

(id(id id))(id id) id(id(id(id id))) id(((id id) id) id)

((id id) id)(id id) id((id(id id)) id)

(id id)(id(id id)) id(id((id id) id)

• •
(id id)((id id) id)

(((id id) id) id) id (id(id(id id))) id

((id id)(id id)) id



306 Chapter 7. Monoidal Categories

Front. (Note that the product ⊗ inM is suppressed.)

Back.

A((BC)(DE))

A(((BC)D)E) • (A(BC))(DE)

A((B(CD))E) ((AB)C)(DE)
• •

(A((BC)D))E ((A(BC))D)E
•

(A(B(CD)))E (((AB)C)D)E

((AB)(CD))E

1A⊗αBC,D,E αA,BC,DE

αA,B(CD),E

αA,B,C⊗(1D⊗1E)

αA(BC),D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E α(AB)C,D,E

αA,BC,D⊗1E

(αA,B,C⊗1D)⊗1E(1A⊗αB,C,D)⊗1E

αA,B,CD⊗1E αAB,C,D⊗1E

A((BC)(DE))

(A(BC))(DE) A(B(C(DE))) A(((BC)D)E)

((AB)C)(DE) A((B(CD))E)

(AB)(C(DE)) A(B((CD)E)

• •
(AB)((CD)E)

(((AB)C)D)E (A(B(CD)))E

((AB)(CD))E

1A⊗αBC,D,EαA,BC,DE

αA,B,C⊗(1D⊗1E)

1A⊗αB,C,DE

αA,B,C(DE) 1A⊗(1B⊗αC,D,E)

α(AB)C,D,E

(1A⊗αB,C,D)⊗1E

αA,BCD,E

αAB,C,DE

(1A⊗1B)⊗αC,D,E

1A⊗αB,CD,E

αA,B,(CD)E

αAB,CD,E

αA,B,CD⊗1EαAB,C,D⊗1E
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This process continues for every possible diagram in W . Each diagram in W is mapped to a
corresponding diagram in It(M) made up of identity functors, and with the identity functor,
we are free to substitute whatever instance of A,B,C, · · · ∈ M in it. The arrows between the
identity functors are natural transformations which reduce to instances of α, ρ, λ in M upon
substituting objects in the identity functor. What matters here is the functoriality of ΦI . It
guarantees that all the diagrams obtained as the image of Φid will commute.

This completes our work towards proving Mac Lane’s Coherence Theorem.
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7.5 Braided and Symmetric Monoidal Categories

Braided and symmetric monoidal categories serve as some of the most fruitful and most studied
environments of monoidal categories. The formulation of these categories may seem mysteri-
ous and random, but they have been recognized as important in their applications to physics.
Specifically, braided monoidal categories were first defined by Joyal-Street in an attempt to
abstract the solutions to the Yang-Baxter equation, an important equation of matrices in sta-
tistical mechanics. It turns out that braided monoidal categories are exactly the categorical
environment one needs to describe the category of representations of a Hopf algebra Rep(H).
This then allows us a machine which produces solutions to the Yang-Baxter equation, ulti-
mately letting us describe families of such solutions. But it gets even more interesting: the
Yang-Baxter equation turns out to be the necessary criteria to establish a representation of the
Braid group; such a representation is a knot invariant, so this is something of interest to both
mathematicians and physicists.

Before we dive into what exactly braided monoidal categories are, we’ll introduce the concept
of braids.
Definition 7.5.1. The n-th braid group Bn consists of braids on n-strands whose group product
is braid composition. More rigorously,

Bn =
〈
σ1, . . . , σn, σ

−1
1 , . . . , σ−1

n | (1), (2)
〉

where (1), (2) are generator relations described below.

1. σiσj = σjσi whenever |i− j| > 1

2. σi+1σiσi+1 = σiσi+1σi.

Relations (1) and (2) are imposed in order to reflect physical reality. Below the relations
are pictured on a three strands.

= =

Geometrically, the above braids are clearly equivalent. Algebraically this translates to the
statements σ3σ1 = σ1σ3 and σ1σ2σ1 = σ2σ1σ2.

The first two braids represent σ3σ1 and σ1σ3. Clearly, these are physically equal. Note however
this would not work if they were adjacent, i.e., σ2σ1 6= σ2σ1. Hence we set σiσj = σjσi for
|i − j| > 1. For the second pair of braids, it may take some staring to see that they are
physically equal. As we shall see, the relation σi+1σiσi+1 = σiσi+1σi, called the braid relation,
is of deep importance.
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Definition 7.5.2. ABraided Monoidal Category C is a monoidal category (C,⊗, I) equipped
additionally with a natural transformation, know as the "twist" morphism

σA,B : A⊗B B ⊗ A (Twist Morphism)

such that the following diagrams commute for all objects A,B,C of C.

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

σX,Y⊗Z

αY,Z,XαX,Y,Z

σX,Y ⊗1Z

αY,X,Z

1Y ⊗σX,Z

(7.3)

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

σX⊗Y,Z

α−1
Y,Z,Xα−1

X,Y,Z

1X⊗σY,Z

α−1
X,Z,Y

σX,Z⊗1Y

(7.4)

Note that just because we have a twist morphism, it is not necessarily the case that σB,A ◦
σA,B = 1A⊗B. That is, applying the twist morphism twice is not guaranteed to give you back
the identity. This case is treated separately.

Example 7.5.3. The canonical example of a braided monoidal category is the braid category
B. This is the category where:
Objects. All integers n ≥ 0.
Morphisms. For any two integers m,n, we have that

HomB(n,m) =



Bn if n = m

∅ if n 6= m

Composition in this category is simply braid composition. We can introduce a tensor product
⊗ on B where on objects n ⊗m = n + m while on morphisms α ⊗ β is the direct sum braid.
The direct sum braid is simply the braid obtained by placing two braids side-by-side.
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⊗ =

The braids σ1σ1σ2 and σ2σ1σ2 are summed together to obtain the braid σ1σ1σ2σ5σ4σ5 above on
the right.

With an identity object being the empty braid, we see that B is a strict monoidal category.
The associators and unitors are simply identity morphisms. However, this category also have
a natural braiding structure. For any two objects n,m, introduce the braiding

σn,m : n+m −!∼ m+ n

where on objects the addition is simply permuted; on morphisms, however, σn,m corresponds
to the braid of length n+m as below.

m n

· · ·· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

It is a simple exercise to show that this satisfies the hexagon axioms; the task is simplified
due to the fact that the associators are identities. While this category may seem like a boring
example, it plays a critical role in demonstrating coherence for braided monoidal categories,
something we will do later.

Example 7.5.4. Let GrModR be the category of graded R-modules M = {Mn}∞n=1. Recall
from 7.1 That GrModR forms a monoidal category. The tensor product of two graded R

modules M = {Mn}∞n=1 and P = {Pn}∞n=1 is the graded R-module M ⊗ P whose n-th level is
given by

(M ⊗ P )n =
⊕

i+j=n
Mi ⊗ Pj.
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We can additionally introduce a braiding on this category for each invertible elements k ∈
R; specifically, we define the braiding σM,P : M ⊗ P P ⊗ M to be the graded module
homomorphism whose n-th degree is

(σM,P )n :
⊕

i+j=n
Mi ⊗ Pj

⊕

i+j=n
Pj ⊗Mi

(m⊗ p) 7−! kijp⊗m

whenever m ∈Mi and p ∈ Pj. Observe that with this braiding we get that

m⊗ (p⊗ q) r(j+k)i(p⊗ q)⊗m

(m⊗ p)⊗ q
r(j+k)ip⊗ (q ⊗m)

=
rijp⊗ (rikm⊗ q)

rij(p⊗m)⊗ q rijp⊗ (m⊗ q)
which clearly commutes. The second hexagon axiom is also easily seen to be satisfied:

(m⊗ p)⊗ q r(i+j)kq ⊗ (m⊗ p)

m⊗ (p⊗ q)
r(i+j)k(p⊗m)⊗ n

=
rjk(rikp⊗m)⊗ n

rjkm⊗ (q ⊗ p) rjk(m⊗ q)⊗ p
Thus we see that GrModR is more than just a monoidal category; each invertible element of
R induces a braiding, making it a braided monoidal category as well.

Example 7.5.5. IfM is monoidal, we can recall from Example 7.1 that the functor category CM
is also monoidal. If additionally we have thatM is braided with a braiding σA,B : A⊗B B⊗A,
then we can extend this to a braiding on the functor category of CM by defining, for two functors
F,G : C M , the natural transformation

βF,G : F ⊗G G⊗ F

defined pointwise for each A ∈ C as the morphism

(βF,G)A = σF (A),G(A) : F (A)⊗G(A) −!∼ G(A)⊗ F (A).

One can then check that this natural transformation satisfies the braided hexagon axioms since
the braiding σ in M does, so that CM is additionally braided if M is additionally braided.
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Definition 7.5.6. A Symmetric Monoidal Category C is a braided monoidal category such
that, for the twist morphism,

σB,A ◦ σA,B = 1A⊗B.

Symmetric monoidal categories are basically monoidal categories which collapse the infor-
mation which braided monoidal categories have the potential to encode. Their environment is
much simpler, but at the cost of information.

Example 7.5.7. Recall from the previous examples that GrModR can be treated as a braided
monoidal category. A braiding is given an invertible element r ∈ R. However, consider the
idempotent elements of this ring, i.e., the elements r ∈ R such that r2 = 1. Then we see that
these elements not only give rise to braidings

(σM,P )n :
⊕

i+j=n
Mi ⊗ Pj

⊕

i+j=n
Pj ⊗Mi

(m⊗ p) 7−! kijp⊗m

but these braidings have the property that σM,P ◦σP,M = 1M⊗P , since r = 1. Hence the category
of graded modules may be specially treated as symmetric monoidal categories whenever there
is an idempotent element of the ring R.

Example 7.5.8. Recall from 7.1 that the permutation category P forms a monoidal category
where objects are nonnegative integers and homsets are given by the symmetric groups. The
monoidal product ⊗ simply sums the object, while two permutations τ ∈ Sn and ρ ∈ Sm are
sent to the direct sum permutation τ ⊗ρ ∈ Sn+m (this permutation simply horizontally stacks).

In this category, we can introduce a symmetric braiding σn,m : n + m m + n to be the
unique permutation σn,m ∈ Sn+m pictured below.

(1, 2, . . . , n, n+ 1, n+ 2, . . . , n+m)

(n+ 1, n+ 2, . . . , n+m, 1, 2, . . . , n)

σn,m

One thing to notice is that this is the underlying permutation of braid given in Figure 7.5.
With the existence of this element of Sn+m for every pair of objects n,m in P, we see that the
permutation category is actually symmetric monoidal.

Definition 7.5.9. A PROP, an acronym coined by Mac Lane for "Product and Permutation
Category", is a symmetric monoidal category P containing the category (N, 0,+).
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Example 7.5.10. Consider the category FinSet, where the objects are natural numbers n
and a morphism f : n m is a function from a set of size n to one of size m.

Here, we necessarily include 0 as an object; this denotes the empty set. First we demonstrate
that this is monoidal. Let n,m be any integers. Then we’ll show that + : FinSet×Finset
FinSet is a bifunctor. First, we acknowledge that n+m ∈ FinSet.

Next, consider the set of morphisms

h : k n f : n n′

j : l m g : m m′.

Let Sk be the set of k elements. Now since f, g are functions, we know that f : Sn Sn′ and
g : Sm Sm′ for some sets in Set.Then we can define f + g : (n+ n′) (m+m′) to be the
function in Set where

f + g : Sn q Sn′ Sm q Sm′ .
where

(f + g)(x, i) =




(f(x), 0) if i = 0
(g(x), 1) if i = 1.

Hence f + g makes sense in FinSet as morphism f + g : (n+ n′) (m+m′).
Now consider the morphisms f ◦ h and g ◦ j. Observe that f ◦ h+ g ◦ j : k + l n′ +m′.

This is then the function
f ◦ h+ g ◦ j : Sk q Sl Sn′ q Sm′

but note that

f ◦ h+ g ◦ j : Sk q Sl Sn′ q Sm′ = (f + g) ◦ (h+ j)

Hence we must have that (f + g) ◦ (h+ j) = f ◦h+ g ◦ j, so that we have that + is a bifunctor.
Now we show that this is a monoidal category. Define the natural isomorphisms

αn,m,p : n+ (m+ p) −!∼ (n+m) + p

λn : 0 + n −!∼ n

ρn : n+ 0 −!∼ n.

We can describe these functions in further detail. Observe that αn,m,p can be realized to be a
function where

αn,m,p : Sn q (Sm q Sp) −!∼ (Sn q Sm)q Sp.
Elements of Sn q (Sm q Sp) will be either (x, 0) where x ∈ Sn, or (x, 1) where x ∈ Sm q Sp. In
turn, the elements of this set are of the form (y, 0) where y ∈ Sm and (y, 1) where y ∈ Sp.

On the other hand, elements of (Sn q Sm)q Sp are of the form (x′, 0) if x′ ∈ Sn q Sm or are
of the form (x′, 1) if x′ ∈ Sp. Furthermore, elements of SnqSm are of the form (y′, 0) if y′ ∈ Sn



314 Chapter 7. Monoidal Categories

and (y′, 1) if y′ ∈ Sm.
Now we can explicitly define αn,m,p as

αn,m,p(x, i) =





((x, 0), 0) if i = 0
((y, 1), 0) if i = 1 and x = (y, 0)
(y, 1) if i = 1 and x = (y, 1)

(7.5)

and λ as

λn(x, 1) = x

and ρ as

ρn(x, 0) = x.

Note for both λ and ρ, there is only one case for (x, i) since for λ, i is never 0 and for ρ, i is
never 1.

All of these establish a bijection, and hence an isomorphism. Now to demonstrate that they
are natural, consider f : n n′, g : m m′ and h : p p′. First, we’ll want to show that
the diagram

n+ (m+ p) (n+m) + p

n′ + (m′ + p′) (n′ +m′) + p′

αn,m,p

f+(g+h) (f+g)+h

αn′,m′,p′

commutes, which we can do by a case-by-case basis. First we follow the path

[(f + g) + h] ◦ αn,m,p : Sn q (Sm q Sp) (Sn′ q Sm′)q Sp′ .

and then show it is equivalent to the other path.
i = 0 If the input is (x, 0), we see that αn,m,p(x, i) = ((x, 0), 0). If this is fed into (f + g) + h,

the output will be (f + g)(x, 0), whose output will be ((f(x), 0), 0).
However, suppose we first put (x, 0) into f + (g + h). Then we would have directly
obtain (f(x), 0). Feeding this into αn′,m′,p′ , we would get ((f(x), 0), 0). Hence we obtain
naturality in this case.

i = 1. Suppose now the input is (x, 1). Then either x = (y, 0) with y ∈ Sm or (y, 1) where
y ∈ Sp.
y ∈ Sm. Suppose x = (y, 0). Then we see that αn,m,p(x, 1) = ((y, 1), 0). Plugging this

into (f + g) + h, we get

[(f + g) + h]((y, 1), 0) = ([f + g](y, 1), 0) = ((g(y), 1), 0).
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However, we also could have obtained this value by first starting with f + (g + h).
In this case,

[f + (g + h)]((y, 0), 1) = ([g + h](y, 0), 1) = ((g(y), 0), 1).

Plugging this into αn′,m′,p′ , we then get that

αn′,m′,p′((g(y), 0), 1) = ((g(y), 1), 0).

Hence the two paths are equivalent.
y ∈ Sp. Suppose x = (y, 1), Then we have that αn,m,p((y, 1), 1) = (y, 1). Sending this

into (f + g) + h, we get

[(f + g) + h](y, 1) = (h(y), 1).

However, we could have achieved this value by first plugging ((y, 1), 1) into f+(g+h):

[f + (g + h)]((y, 1), 1) = ([g + h](y, 1), 1) = ((h(y), 1), 1).

Then sending this into αn′,m′,p′ , we get

αn′,m′,p′((h(y), 1), 1) = (h(y), 1).

Thus the two paths are equivalent.
Hence we see that this diagram does commute, so that α is natural.

[Show naturality works for λ and ρ.]
Now we show that these natural isomorphisms satisfy the monoidal properties. Specifically,

we’ll show that the diagram

n+ (0 +m) (n+ 0) +m

n+m

αn,0,m

1n+λm ρn+1m
.

must commute. To do this, we consider how these functions are realized in Set. If we consider
(x, i) ∈ Sn q (∅q Sm), we see that we have two cases to consider.
i = 0. If i = 0, then we see that αn,0,m(x, 0) = ((x, 0), 0). Sending this into ρn + 1m, we get

that [ρm + 1m]((x, 0), 0) = (ρ(x, 0), 0) = (x, 0).
On the other hand, we could obtain this value by directly sending (x, 0) into 1n + λm.
Observe that [1n + λm](x, 0) = (1n(x), 0) = (x, 0). Hence the diagram commutes for this
case.

i = 1. If i = 1, then our element is of the form (x, 1). However, we know that x = ((x, 1), 0),
since (x, 1) ∈ 0 + m. Thus observe that αn,0,m((x, 1), 1) = (x, 1). Consequently, we get
that [ρn + 1m](x, 1) = (1m(x), 1) = (x, 1).
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On the other hand, we can start instead be evaluating [1n +λm]((x, 1), 1) = (λ(x, 1), 1) =
(x, 1). Hence the diagram commutes in this case.

Thus we see that this diagram holds for all naturals n,m.
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7.6 Coherence for Braided Monoidal Categories

We saw with monoidal categories that ultimately everything we were saying made sense. That
is, we saw that our definition does not give us an contradictions, and that we can obtain a
significant coherence result which ultimately allows us to not worry about the particular paren-
thesization of a monoidal product. Further, we saw that diagrams freely built from associators
and unitors were all commutative.

With braided monoidal categories we can get a similar statement. This time, however, it is
a bit weaker, although it is nevertheless extremely useful. It was Joyal and Street in the 1993
paper who both first proved the coherence for braided monoidal categories. Their work heavily
relies on the work of G.M. Kelly, and they use very slick, higher categorical tricks.

In this section, we spell out those tricks.
Definition 7.6.1 (Joyal-Street). Let A be a category with V a monoidal category. Suppose
T : A V is a functor. We define a Yang-Baxter operator to be a family of isomorphisms

yA,B : T (A)⊗ T (B) −!∼ T (B)⊗ T (A).

for each A,B ∈ A such that the diagram below commutes. such that the diagram below
commutes.

T (A)⊗ T (B)⊗ T (C) T (B)⊗ T (A)⊗ T (C)

T (A)⊗ T (C)⊗ T (B) T (B)⊗ T (C)⊗ T (A)

T (C)⊗ T (A)⊗ T (B) T (C)⊗ T (B)⊗ T (A)

1⊗BB,C

yA,B⊗1

1⊗yA,C

yA,C⊗1 yB,C⊗1

1⊗yA,B

Note that here we omit the associators although they are implicitly included in the diagram.
Note also that, for any functor T : A V with V a braided monoidal category, T trivially has
a Yang-Baxter operator y where we set

yA,B = σT (A),T (B).

Before we move forward we introduce a notion that can be found in [?], originally from [?]. For
our purposes, we will denote the category obtained via disjoint unions of the symmetric groups
Sn as P. That is, the objects of P are natural numbers and

HomP(n,m) =



Sn if n = m

∅ if n 6= m
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Definition 7.6.2. Let A be a category and suppose suppose D ∈ Cat/P. That is, D is a
category with an associated functor Γ : D P. Then we define the category D ∫ A where
Objects. Finite strings [A1, A2, . . . , An] with Ai ∈ A
Morphisms. For two strings [A1, . . . , An] and [B1, . . . , Bn], denoted as [Ai] and [Bi],

HomD ∫ A
(

[Ai], [Bi]
)

=
{

(α, f1, . . . , fn) | fi ∈ HomA(Ai, Bσ(i))
}

Here α is a morphism of D such that Γ(α) = σ ∈ Sn. Finally, we allow no morphisms
between two different strings of different length.

For any category A, there exists a natural inclusion functor

iA : A D
∫
A

iA(A) = [A] iA(f : A B) = (e1, f) : [A] [B]

where e1 is the sole element of S1. This functor will be useful for us later. Next we formalize
the following category which can be thought of as a generalized functor category.
Definition 7.6.3. Let A,B be categories. Denote the category {A,B} as the category with
objects (n, F : An B) whose morphisms are

Hom{A,B}
(

(n, T ), (m,S)
)

=



{(σ, η : σ · T S)} if n = m

∅ if n 6= m.

Here σ ∈ Sn, and η : σ · T S is a natural transformation from the functor σ · T defined
pointwise as

σ · T (A1, A2, . . . , An) = T (Aσ(1), . . . , Aσ(n))

to the functor S.

There are two things we need to say about this category. First, for any generalized functor
category {A,V}, there exists a a projection functor Γ : {A,B} P defined on objects and
morphisms as

Γ(n, T : An B) = n Γ(σ, η : σ · T S) = σ.

Hence we see that each category {A,B} is actually a member of Cat/P, because it always
comes equipped with a functor into P.

Second, if V is a strict monoidal category, then so is {A,V}. One can see this by defining
for two functors T : An V and S : Am V the functor T ⊗ S : An+m V which is a
functor that can be defined pointwise as

(T ⊗ S)(A1, . . . , An+m) = T (A1, . . . , An)⊗ S(An+1, . . . , An+m).

Thus if V is strict, then so it {A,V}.
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What is useful about this construction is that Kelly showed that the functors

(−)
∫
A : Cat/P Cat {A, (−)} : Cat Cat/P

form an adjunction. We use this in the next proposition, which is also aided by the following
lemma.
Lemma 7.6.4. Let V be a strict monoidal category. Suppose T : 1 V has a Yang-Baxter
operator y. Then there exists a unique strict monoidal functor T ′ : B V such that the
diagram below commutes.

1 B

V

i

T
T ′

Further, we have that T ′(σ) = y.

Proof. Denote the element of 1 as •. Then T (•) = X for some X ∈ V . Towards a definition of
T ′, let T ′ : B V be defined on objects as T ′(1) = X. If we force T ′ to be strict, this will define
its value on all objects of B. On morphisms, first observe that each β ∈ Bn can be expressed
in terms of its generators σi. Hence it suffices to define the action of T ′ on a generator σi, and
we do this naturally as:

T ′(σi) = 1⊗(i−1)
X ⊗ yX,X ⊗ 1⊗(n−i−1)

X : X⊗n X⊗n

We then define T ′(β) as the iterative composite over the generators. We are then left to check
that the relations of B are preserved (which they are). This then allows us to define T ′ : B V
to be a unique, well defined strict monoidal functor which allows the diagram to commute.

Proposition 7.6.5. Let V be a strict monoidal category, and suppose we have a functor T :
A V with associated Yang-Baxter operator y. Let z be the Yang-Baxter operator on
iA : A B

∫ A. Then there exists a unique strict monoidal functor T ′ : B
∫ A V such that

the diagram

A B
∫ A

V

iA

T
T ′

commutes and that T ′(y′) = y.

Proof. Recall that {A,V} is a strict monoidal category if V is. Consider again the one point
category 1 and construct functors FS : 1 {A,V} and j : 1 B where FT (•) = T : A V
and i(•) = 1. Then by the previous work, there exists a map T# : B {A,V} such that the
diagram below commutes.
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1 B

{A,V}

i

FT
T#

Now construct the maps {FS} : {∗} Hom(1, {A,V}) and {S} : {∗} Hom(A,V) where
{FS}(∗) = FS and {S}(∗) = S. Consider the pullback squares below.

P Hom(B, {A,V})

{∗} Hom(1, {A,V})

(−)◦i

{FS}

(K,T ) T : B {A,V}

∗ FS = T ◦ i

Q Hom(B
∫ A,V)

{∗} Hom(A,V)

(−)◦iA

(K ′, T ′) T ′ : B {A,V}

∗ S = T ′ ◦ iA{S}

First, P corresponds to the set of functors T : B {A,V} such that precomposition with i is
equal to F . Meanwhile, the set Q consists of functors T ′ : B

∫ A V where precomposition
with iA is equal to S. However, these sets are in bijection due to the adjoint relation we have.
In other words, the diagrams

1 B

{A,V}

i

FS
T

A B
∫ A

V

iA

S
T ′

are in bijection. Hence we see that T# corresponds uniquely with a functor T ′ such that the
diagram

A B
∫ A

V

iA

T
T ′

commutes and preserves the Yang-Baxter operators as desired.

Theorem 7.6.6. Let V be an B-category and suppose we have a functor F : A V . Then
there is an equivalence of categories

BFun(B
∫A,V) ' Fun(A,V).

given by precomposition of each F : B
∫ A V with iA : A B

∫ A.
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Proof. We follow the same argument as Joyal and Street. By the previous lemma, every SB-
monoidal category is strongly equivalent to a strict SB-monoidal category V ′ via a pair of
functors E : V V ′ and E ′ : V ′ V . Hence observe that if we have an equivalence of
categories (−) ◦ iA : BFun(B

∫ A,V ′) Fun(A,V ′), then the diagram below commutes

BFun(B
∫A,V) Fun(A,V)

BFun(B
∫A,V ′) Fun(A,V ′)

(−)◦iA

F◦(−)

(−)◦iA

E′◦(−)

and the top dashed arrow is an equivalence as well. So it suffices to prove this for the strict
case. Now, the proposed functor F behaves as

F (S : B
∫
A V) = S ◦ iA : A V .

We must demonstrate that this is fully faithful and essentially surjective.
Fully faithful. Let F,G : B

∫ A V be strong SB-monoidal functors. Then define the
function

ϕ : HomBFun(B
∫
A,V)(F,G) HomFun(A,V)(F ◦ iA, G◦iA).

where, given a natural transformation η : F G, we have that ϕ(η) : F ◦ iA G ◦ iA
is a natural transformation defined as

ϕ(η)A = η[A].

We show that this is injective. Suppose ϕ(η) = ϕ(η′) for two natural transformations
η, η′ : F G with F,G ∈ BFun(B

∫ A,V). The fact that ϕ(η) = ϕ(η′) implies that

η[A] = η[A′].

As these are natural transformations between monoidal functors, we have that the diagram
below commutes.

F ([A1])⊗ · · · ⊗ F ([An]) G([A1])⊗ · · · ⊗G([An])

F ([A1, . . . , An]) G([A1, . . . , An])

η[A1]⊗···⊗η[An]

∼=P1 P2∼=

η[A1,...,An]

The morphisms P1 and P2 are the isomorphisms built inductively from

F2 : F ([A])⊗ F ([B] −!∼ F ([A,B])



322 Chapter 7. Monoidal Categories

which comes equipped with the data of a strong monoidal functor [see Mac Lane, p. 256].
Moreover, the diagram commutes by Mac Lane’s coherence theorem.
The above diagram similarly holds with η replaced as η′, since η′ is also a natural trans-
formation of monoidal functors. Hence what we see is that

η[A1,...,An] ◦ P1 = P2 ◦ η[A1] ⊗ · · · ⊗ η[An]

= P2 ◦ η′[A1] ⊗ · · · ⊗ η′[An]

= η′[A1,...,An] ◦ P1.

As P1 is an isomorphism, we have that η[A1,...,An] = η′[A1,...,An], so that ϕ(η) = ϕ(η′) implies
that η = η′. Hence the functor is faithful. The functor is clearly full, since by the above
process we can always take a natural transformation η : F ◦ iA G◦ iA and build it into
a natural transformation η : F G.

Essentially Surjective. Consider a functor F : A V . By Proposition 7.6.5, we know there
exists a unique S : B

∫ A V such that S ◦ iA = F . Hence we have essential surjectivity;
in fact, we have a stronger version in the strict case.
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7.7 Monoids, Groups, in Symmetric Monoidal Categories

Recall from section ? that we were able to construct monoid and groups which were internal
to some category C. The philosophy behind the construction is one we’ve seen before: we
of course think of monoids and groups by their elements, but we resist the temptation and
instead present an object-free, diagrammatic set of axioms for monoids and rings. We utilized
the cartesian product in the category C to demonstrate this. However, we now know that the
cartesian product in any category is a small example of a category with a symmetric monoidal
structure. Hence we revisit the concepts of a monoid and group, and expand their generality
by demonstrating that they can be defined in a symmetric monoidal category.
Definition 7.7.1. Let (M,⊗, I, α, ρ, λ) be a monoidal category and let M be an object ofM.
We say M is if there exist maps

µ : M ⊗M M

η : I M

referred to as the multiplication and identity maps, such that the diagrams below commute.

M ⊗ (M ⊗M) (M ⊗M)⊗M M ⊗M

M ⊗M M

α

1⊗µ

µ⊗1M

µ

µ

I ⊗M M ⊗M M ⊗ I

M

η⊗1M

λM
µ

1M⊗η

ρM

Example 7.7.2. One of the most useful examples of this concept arises from the notion of an
algebra A over some field k, where A is a vector space over the field k.
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7.8 Enriched Categories

When we originally defined categories, we sought a degree of large generality that was able to
capture a huge amount of mathematical phenomenon. However, this was not out a mere desired
for generality; as Mac Lane puts it, "good general theory does not search for the maximum
generality, but for the right generality" (108). But it does turn out that in defining categories
so widely we lose some of their internal structure; for example, in many categories, every homset
might have a underlying abelian group structure. These are called preadditive categories
and are extremely useful, in that they give us a first step towards a general framework (but not
to general) that allows one to do homological algebra in.

Now if we’ve lost some original framework, how do we recover it? First, recall that in
categories, objects are basically dummies. It doesn’t matter how I denote my objects in my
category C; you and are I talking about the same category if our morphisms act the same exact
way. For example, the categories

1 2 3 · · · n

and

All Politicians Are · · · Corrupt

where the above objects are n words describing how politicians suck, are the same preorders.
Thus, because categorical structure is primarily found within the morphisms, i.e. the homsets,
we only need to fix these to take back our original structure.
Definition 7.8.1. Let (V ,⊗, I) be a monoidal category. A small category C is a V-category or
an enriched category over V if

1. For each A,B ∈ C, we have that HomC(A,B) ∈ V
2. There exists a "composition" operator

◦A,B,C : HomC(A,B)× HomC(B,C) HomC(A,C)

3. For each object A ∈ C, we have a "identity object"

iA : I HomC(A,A)

such that our composition operator is associative:
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Hom(A,B)⊗ (Hom(B,C)⊗ Hom(C,D)) (Hom(A,B)⊗ Hom(B,C))⊗ Hom(C,D)

Hom(A,B)⊗ Hom(B,D) Hom(A,D) Hom(A,C)⊗ Hom(C,D)

1⊗◦B,C,D

α

◦A,B,C⊗1

◦A,B,D ◦B,C,D

and such that our unital elements in each homset behave morally like an identity element
should:

Hom(B,B)⊗ Hom(A,B) Hom(A,B) Hom(A,B)⊗ Hom(A,A)

I ⊗ Hom(A,B) Hom(A,B)⊗ I

◦A,B,B ◦A,A,B

iB⊗1
λ

1⊗iAρ

Example 7.8.2. The following is a classic example due to F.W. Lawvere. A Lawvere metric
space is a set X equipped with a distance function d : X ×X R such that

1. d(x, x) = 0 for all x ∈ X
2. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

It turns out that, we may equivalently define such a space as a category enriched over ([0,∞),+, 0).
Recall that ([0,∞),+, 0) where + is addition forms a symmetric monoidal category. Here

we treat [0,∞] as a poset where for a pair of objects a, b there exists exactly one morphism

a b iff b ≤ a.

Now what does it look like for a category C to be [0,∞]-category? It means that for any pair
of objects A,B, we have that HomC(A,B) ∈ [0,∞). If we denote d(A,B) = HomC(A,B), this
then implies that we have a function

d : Ob(C)×Ob(C) [0,∞].

Enriched categories also grant us a composition morphism

HomC(A,B)× HomC(B,C) HomC(A,C)

for all objects A,B,C. But in [0,∞), morphisms are just size relations, so what this really
means is that

d(A,C) ≤ d(A,B) + d(B,C)

for all A,B,C ∈ C Finally, we see the identity criterion states that for each object A, we have
a morphism iA : 0 HomC(A,A) which translates to

d(A,A) ≤ 0 =⇒ d(A,A) = 0
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since d(A,A) ∈ [0,∞]. This should feel very familiar; what we’ve just come up with is nearly
a metric space structure on the objects of our category! We are only missing the symmetry
relation. For that, this special construction is known as a Lawvere metric space.

Example 7.8.3. Recall that a (strict) 2-category is a category C such that, in addition to the
morphisms f : A B between objects A,B ∈ C, there exists 2-morphisms α : f g between
parallel morphisms f, g : A B.

A B

f

g

α

These two morphisms have access to two different forms of composition. On one hand, there is
"vertical" composition

A B

f

g

α

and
A B

g

h

β

=⇒
A B

f

h

β•α

while on the other, there is "horizontal" composition.

A B C

f

g

h

k

γ δ

=⇒
A B

h◦f

k◦g

δ◦γ

Moreover, we require that the interchange law be satisfied and that the morphisms form a
category under the vertical composition given by ◦. However, we can rephrase this as saying a
category C is a 2-category if

1. For each A,B ∈ C we have that (HomC(A,B), ◦) is a category

2. There exist a composition operator ◦ : Hom(A,B)× Hom(B,C) Hom(A,C)

A B C

f

g

h

k

γ δ =⇒ A B

h◦f

k◦g

δ◦γ

3. For each object A, we have a functor iA : 1 Hom(A,A), where 1 is the one object
category with one morphism that is sent to 1A.



7.8 Enriched Categories 327

Above, (3) is stupidly simple; but the reason we’re framing it this way is to demonstrate that
a strict 2-category C is the same thing as a category C enriched over the monoidal category
(Cat,×, 1); the category of small categories whose monoidal product is the cartesian product
and whose identity is the one-object-one-morphism category 1.



328 Chapter 7. Monoidal Categories



(σM ,P )n :
⊕

i+j=n

Mi ⊗ Pj →
⊕

i+j=n

Pj ⊗Mi

(m⊗ p) 7−→ kijp⊗m

⊗ =

w
(n)
A

v′A

vA wA

v′′A

A×B A⊗B

G

ϕ

f
hA⊗B

A⊗ (I ⊗B)

(A⊗ I)⊗ (I ⊗ (I ⊗B))

1A⊗λb

ρA⊗λI⊗B

I ⊗A A A⊗ I

I ⊗B B B ⊗ I

λA

1I⊗f f

ρA

f⊗1I

λB
ρB

A⊗ (B ⊗C) (A⊗B)⊗C

A′ ⊗ (B′ ⊗C ′) (A′ ⊗B′)⊗C ′

αA,B,C

f⊗(g⊗h) (f⊗g)⊗h

αA′,B′,C′8. Abelian Categories

Abelian categories are generalizations of the structure which can be found in the category of
abelian groups Ab. This may be obvious from the name; what is nontrivial, however, is how to
preserve the nice structure of the category without specific reference to the elements themselves.
It turns out this is possible, but is generally not the way we think about Ab. This is the aim
of this chapter.

8.1 Preadditive Categories

Consider two abelian groups (G,+) and (H, ·) of Ab. Recall from group theory that we can
turn the set Hom(G,H) into an abelian group (Hom(G,H), ∗) as follows. Given ϕ, ψ : G H,
we can create another group homomorphism ϕ ∗ ψ : G H where

(ϕ ∗ ψ)(g) = ϕ(g) · ψ(g).

Observe that this is in fact a group homomorphism: if g, g′ ∈ G, then

(ϕ ∗ ψ)(g + g′) = ϕ(g + g′) · ψ(g + g′)
= ϕ(g) · ϕ(g′) · ψ(g) · ψ(g′)

=ϕ(g) · ψ(g) · ϕ(g′) · ψ(g′)
= (ϕ ∗ ψ)(g) · (ϕ ∗ ψ)(g′).

In the third step we utilized the fact that (H, ·) is abelian. Thus (Hom(G,H), ∗) is not nec-
essarily a group unless H is an abelian group. Therefore, this construction doesn’t extend to
Grp.

At this point, your category-theory-voice in your head is probably asking:
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If H is an abelian group, can we create a functor FH : Ab Ab where
G 7! Hom(G,H)?

The answer is yes; the functor is actually contravariant, for suppose we have a group homo-
morphism

ϕ : G G′.

Then define the function

FH(ϕ) : Hom(G′, H) Hom(G,H)

where

FH(ϕ)(ψ : G′ H) = ψ ◦ ϕ : G H.

To verify functoriality, we have to check that this function is actually a group homomor-
phism. Towards that goal, consider ψ, σ : G H. Then observe that for any g ∈ G,

FH(ϕ)(ψ + σ)(g) = ϕ(ψ(g) + σ(g))
= ϕ(ψ(g)) + ϕ(σ(g))
= FH(ϕ)(ψ)(g) + FH(ϕ)(ψ)(g)

which verifies that FH(ϕ) is a group homomorphism. Therefore, we see that FH : Ab Ab
is in fact a functor.

Now your category-theory-voice should be asking:

If G is an abelian group, can we also create a functor FG : Ab Ab where
H 7! Hom(G,H)?

One can easily show that the answer is yes. In this direction, the functor is covariant. That is,
for ψ : H H ′, we have that

FG(ψ) : Hom(G,H) Hom(G,H ′)

where

FG(ψ)(ϕ : G H) = ψ ◦ ϕ : G H ′.

Note that for our functors, we have that

FH(G) = FG(H).

This is bifunctor-ish. Therefore, our category theory voice is now asking:
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Do we have a bifunctor F : Ab×Ab Ab on our hands, where F (G,H) =
Hom(G,H)?

To see if this answer is true, we ought to be able to show that, given ϕ : G′ G and ψ : H H ′,
the diagram

FH(G) FH(G)

FG′(H) FG′(H)

FH(ϕ)

FG(ϕ) FG
′ (ψ)

FH(ψ)

=

Hom(G,H) Hom(G′, H)

Hom(G,H ′) Hom(G′, H ′)

(−)◦ϕ

ψ◦(−) ψ◦(−)

(−)◦ϕ

is commutative. The above diagram is in fact commutative since function composition is
associative! That is, given σ : G H, observe that going right and then down gives

ψ ◦ (σ ◦ ϕ)

while going down and then right gives

(ψ ◦ σ) ◦ ϕ.

Hence we have commutativity of the above diagram, and we therefore have a true bifunctor
F : Ab×Ab Ab where

F (G,H) = Hom(G,H).

What this really shows is that Hom(−,−) is a functor; specifically, a bifunctor. So while we
typically think of Hom(G,H) as a set, it had hidden functorial properties. Thus what makes
Ab special is that plugging in abelian groups outputs an abelian group, and this is not the case
with other constructions (e.g. Grp).

Let us now consider a new observation of Ab. For any triple of abelian groups

(G, ?), (H,+), (K, ·)

we can create abelian groups
(

Hom(G,H),+′
)

(ϕ1 +′ ϕ2)(g) = ϕ1(g) + ϕ2(g)
(

Hom(H,K), ·′
)

(ψ1 ·′ ψ2)(h) = ψ1(h) · ψ2(h)
(

Hom(G,K), ∗
)

(σ1 ∗ σ2)(g) = σ1(g) · σ2(g)

where ϕi ∈ Hom(G,H), ψi ∈ Hom(H,K) and σi ∈ Hom(G,K) for i = 1, 2. Now since these
are abelian groups in Ab, there is a composition operator

◦ : Hom(G,H)× Hom(H,K) Hom(G,K)
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where ◦(ϕ : G H,ψ : H K) 7! ψ ◦ ϕ : G K. However, we now run into a problem
where our operators might not play nicely with each other. Specifically, is it true that

ψ ◦ (ϕ1 +′ ϕ2) = (ψ ◦ ϕ1) ∗ (ψ ◦ ϕ2)

or
(ψ1 ·′ ψ2) ◦ ϕ = (ψ1 ◦ ϕ) ∗ (ψ2 ◦ ϕ)?

For the first case, the answer is yes. Observe that

ψ ◦ (ϕ1 +′ ϕ2)(g) = ψ(ϕ1(g) + ϕ2(g))
= ψ(ϕ1(g) + ϕ2(g))
= ψ(ϕ1)(g) · ψ(ϕ2)(g)
=
(
(ψ ◦ ϕ1) ∗ (ψ ◦ ϕ2)

)
(g).

The reason we have linearity here is because of the way we defined the group operations on
the homsets. The definition of these operations is intuitively correct, but we get accidentally get
an extra bonus of obtaining linearity so that we don’t have to worry about the above equations
not holding.

In order to mimic this behavior, we abstract this into a category to define a Ab-category.
Definition 8.1.1. An Ab-category or Preadditive Category is a category C such that, for
each pair of objects A,B, there exists an abelian group operation + on the set Hom(A,B) such
that

◦ : Hom(A,B)× Hom(B,C) Hom(A,C)
(f, g) 7! g ◦ f

is bilinear. What we mean by bilinear is that, given morphisms f, g : A B and h, k : B C,
we have that

(h+ k) ◦ f = h ◦ f + k ◦ f
h ◦ (g + f) = h ◦ g + h ◦ f.

Note that since we demand that HomC(A,B) always be a group, we see that any category
such that HomC(A,B) = ∅ can never be an abelian group. A group always requires the
existence of an identity; a demand that an empty set can never meet. Therefore, as an example,
any discrete category cannot be a preadditive category because all of the nontrivial homsets
are empty.

As we demonstrated building up to this definition, Ab is a trivial example of a preadditive
category. A less trivial example is VectK where K is a field, but this is nearly automatic
since this takes advantage of the fact that vector spaces have their own hidden abelian group
structure.
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Example 8.1.2. Suppose C is a one object category R which is also preadditive. Then this
means that we have two binary operations + and ◦ on the abelian group HomC(R,R) such that

(h+ k) ◦ f = h ◦ f + k ◦ f
h ◦ (g + f) = h ◦ g + h ◦ f.

However, this is simply a ring! The addition is the ring addition, while the ring multiplication
is given by composition. Conversely, a ring regarded as the homset of a one object category
can be defined to be an abelian category. This is because when regarding a group as a one
object category, the group operation becomes the composition operation. Thus adding the
extra axiom of an addition bilinear operation grants us that the category is preadditive.

Example 8.1.3. Let C be a preadditive category. Then Cop is also a preadditive category.
To demonstrate this, we know that every pair of objects A,B ∈ C gives rise to a group
(HomC(A,B),+) for some operation +. This allows us to place a group structure +′ on
HomCop(B,A) where for two f op, gop : B A in Cop,

f op +′ gop = (f + g)op.

That is, we rely on the preexisting group operation + from HomC(A,B). Given that the
composition operator of Cop is ◦op, we can check that this satisfies the bilinearity conditions of
◦op. Suppose hop, kop : B A are two morphisms in Hom(B,A) which are composable with
some f op. Then

(hop +′ kop) ◦op f op = (h+ k)op ◦op f op = f ◦ (h+ k)
= f ◦ h+ f ◦ k
= hop ◦op f op +′ kop ◦op f op.

The other direction can be verified dually, so that the the group operation +′ distributes
bilinearly over ◦op. Therefore, Cop is a preadditive category.

Example 8.1.4. If C is preadditive, then the functor category CJ is preadditive. To demon-
strate this, consider the hom-set HomCJ (F,G) between two functors F,G : J C. Now
consider two natural transformations η, ε ∈ HomCJ (F,G). Then for each f ∈ HomC(A,B), the
familiar diagram commutes.
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A

B

f

F (A) G(A)

F (B) G(B)

ηA

εA

F (f) G(A)

ηB

εB

This diagram tells us that G(f) ◦ ηA = ηB ◦ F (f) and that G(f) ◦ εA = εB ◦ F (f). However,
since C is abelian, we can combine these morphisms and add both equations to get

G(f) ◦ ηA +G(f) ◦ εA = ηB ◦ F (f) + εB ◦ F (f) =⇒ G(f) ◦ (ηA + εA) = (ηB + εB) ◦ F (f).

Hence the diagram below

A

B

f

F (A) G(A)

F (B) G(B)

ηA+εA

F (f) G(A)

ηB+εB

commutes. Therefore, using the group product of (HomC(F (A), F (B)),+), we’ve derived a new
natural transformation from F to G using η and ε in HomCJ (F,G). This allows us to endow
the homset HomCJ (F,G) with the operation +′ defined so that for two η, ε ∈ HomCJ (F,G),
η +′ ε is the natural transformation where for each object A

(η +′ ε)A = ηA + εA

where + is the group operation on (HomC(F (A), G(A)),+). The fact that this distributes
bilinearly over the composition operator is inherited from C, and can easily be verified, so that
CJ is preadditive.

Example 8.1.5. Let C be a category such that for every pair of objects A,B, the hom set
HomC(A,B) is nonempty. Then we can create the category PreAdd(C) where the objects
are the same as C, except each HomPreAdd(C)(A,B) is now regarded as the free abelian group
generated by the elements of HomC(A,B). This results in a preadditive category if we force the
composition operator ◦′ in PreAdd(C) to be bilinear. This forcing makes sense in our case since,
if ∑f∈HomC(A,B) nff,

∑
f∈HomC(A,B) n

′
ff are two arbitrary elements in HomPreAdd(C)(A,B), then if

∑
k∈HomC(B,C) mkk ∈ HomPreAdd(C)(B,C) for some object C, where nf , n′f ,mk are all nonzero for
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finitely many integers, then

∑

k∈HomC(B,C)
mkk ◦′


 ∑

f∈HomC(A,B)
nff +

∑

f∈HomC(A,B)
n′ff




=
∑

f∈HomC(A,B)

∑

k∈HomC(B,C)
nf ·mk(k ◦ f) +

∑

f∈HomC(A,B)

∑

k∈HomC(B,C)
n′f ·mk(k ◦ f)

and the above last expression is in fact an element of HomPreAdd(C)(A,C).
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8.2 Additive Categories

Let G and H be abelian groups in Ab. A natural question to ask in any given category is if a
binary product such at G × H exists in the category. In our case, the answer is yes; it is the
direct sum G⊕H. The direct sum satisfies the universal property

K

G G⊕H H

ϕψ
u

πG πH

Here, K is a third group, ϕ and ψ are arbitrary group homomorphisms, and πG, πH are the
natural projection morphisms. Interestingly, this object also satisfies the universal property

K

G G⊕H H

ϕψ
u

iG iH

Here iG and iH are the natural injections, e.g. iG(g) = g ⊗ eH . However, this implies that
G⊕H is a coproduct! What this implies is that product and coproducts coincide in Ab. This
is actually a pretty remarkable property because this isn’t the case even in nice categories. For
example, in Set, products and coproducts are definitely distinct.

Why is this the case?

Proposition 8.2.1. Let C be a preadditive category with a zero object z. Then for any objects
A,B ∈ C, the following are equivalent

(i) A×B exists

(ii) AqB exists

Moreover, there exists an isomorphism
∏

i∈λ
Ai −!∼

∐

i∈λ
Ai

for any objects Ai ∈ C.

Proof. We only demonstrate one direction because the proof is self-dual.
Suppose A×B exists. Then then if C is an object equipped with morphisms f : C A

and g : C B, the following diagram must hold.
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C

A A×B B

gf
h

πA πB

Equip A with the morphisms 1A : A A and the unique zero morphism ∅BA : A B. Then
there exists a unique iA : A A×B such that the diagram commutes.

A

A A×B B

∅BA1A iA

πA πB

Symmetrically, equip B with the unique zero morphism ∅AB : B A and 1B : B B. Then
there exists a unique iB : B A×B such that the diagram commutes.

B

A A×B B

1B∅AB iB

πA πB

Now we’ll demonstrate that we have a coproduct structure on our hands. To do this, suppose
we have an object C equipped with morphisms f : A C and g : B C. Then we can
construct a morphism h such that the following diagram commutes.

A A×B B

C

f

iA

h

iB

g

Observe that h = f ◦πA+g ◦πB suffices, where + is the group operation on the abelian group
Hom(A×B,C). Observe that

h ◦ iA = (f ◦ πA + g ◦ πB) ◦ iA
= f ◦ (πA ◦ iA) + g ◦ (πB ◦ iA)
= f.

Similarly,

h ◦ iB = (f ◦ πA + g ◦ πB) ◦ 1B
= f ◦ (πA ◦ 1B) + g ◦ (πB ◦ 1B)
= g.
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Hence the commutativity of the above diagram holds; therefore, we see that A× B is also a
coproduct. Finally, recall that if two distinct objects satisfy the same universal property, they
are necessarily isomorphic; therefore the existence of an isomorphism between the product
and coproduct is immediate. �

The above proof is not hard, but it’s also not trivial. Moreover, there are three extremely
important ingredients we utilized that demonstrate that the assumptions we’ve made so far are
actually necessary and useful.

• This proof does not hold for a category without a zero object because there is not, in
general, an obviously conceivable morphism to go from any two objects A and B.

• Notice that calculating h was only possible because we had an abelian group operation.

• Finally, notice that we utilized bilinearity of the composition operator in order to calculate
h ◦ iA and h ◦ iB and thereby verify the universal property.

Therefore, all of our assumptions so far have been necessary and useful. And all of this now
motivates the following definition.
Definition 8.2.2. Let C be an abelian category. A biproduct of two objects A,B of C is an
object A⊗B which is both a product and coproduct.
Equivalently, A biproduct is an object A⊕B equipped with morphisms

πA : A⊕B A iA : A A⊕B
πB : A⊕B B iB : B A⊕B

such that

1. πA ◦ iA = 1A
2. πB ◦ iB = 1B
3. iA ◦ πA + iB ◦ πB = 1A⊕B

Definition 8.2.3. An Additive Category is a preadditive category C such that finite biprod-
ucts exist.

Definition 8.2.4. Consider the category Grp.
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8.3 Preabelian Categories

In Ab, kernels and cokernels exists for every group homomorphism.

First, recall their definitions.
Definition 8.3.1. Let ϕ : G H be a group homomorphism. Then a kernel is an equalizer of
ϕ : G H and 0 : G H, where 0 maps everything to eH , while a cokernel is a coequalizer
of ϕ : G H and 0 : G H.

Ker(ϕ) G H Coker(ϕ)e

0

ϕ
c

In Ab, we set Coker(ϕ) ∼= H/ Im(ϕ) while Ker(ϕ) is the natural normal subgroup of G.
Note that the necessary conditions for creating kernels and cokernels is (1) the existence of

a zero object and (2) the existence of equalizers. If we have these ingredients, can we extend
the concept of kernels and cokernels to additive categories? We can.
Definition 8.3.2. Let C be a category with a zero object as well as equalizers and coequalizers.
Let f : A B be a morphism between two objects in C. We define

• kernel to be the equalizer of f and ∅BA : A B, the zero morphism,

• cokernel of f to be the coequalizer of f and ∅BA : A B.

In diagrams, we have that

Ker(f) A B Coker(f)

C D

e

∅

f
c

ψ
kϕh

Example 8.3.3. In the category Grp, we certainly have a zero object z = {e}. Observe that
for a given morphism ϕ : G H, we can also form the equalizer of ϕ by considering the pair
(Ker(ϕ), e : Ker(ϕ) G) where Ker(ϕ) ⊆ G and e being inclusion. For the same morphism,
we can form the coequalizer be considering the pair (N, c : H H/N) where

N =
⋂

N∈λ
N

where λ = {H ′ ⊆ H | Im(ϕ) ⊆ H ′ and H ′ E H}. It’s a simple exercise to show that these
satisfy the necessary universal properties.

However, it’s important to observe the subtle difference between the behaviors of Grp and
Ab. Because every subgroup of an abelian group is normal, we know that in the case of Ab,
N = Im(ϕ) So the coequalizer becomes

(Im(ϕ), c : H H/ Im(ϕ)).
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It turns out that kernels and cokernels are extremely flexible in additive categories.
Proposition 8.3.4. Suppose C is an additive category. Then the following are equivalent.

(i) C has equalizers and coequalizers.

(ii) C has kernels and cokernels.

Proof. We only prove the statement for equalizers as the proof will be self-dual.
First note that (i) =⇒ (ii) is immediate because a kernel is an equalizer with a morphism

ϕ and a zero morphism. To show (ii) =⇒ (i), suppose that we have kernels for every
morphism in C. Then consider two morphisms ϕ, ψ : G H. We can combine these two
morphisms by our group operation on Hom(G,H) and consider ϕ − ψ. Since we can take
kernels, we take the kernel of this morphism.

Ker(ϕ) G He ϕ−ψ

We now argue that this is the equalizer of ϕ, ψ. First observe that

(ϕ− ψ) ◦ e = 0 =⇒ ϕ ◦ e− ψ ◦ e = 0 =⇒ ϕ ◦ e = ψ ◦ e

using bilinearity of ◦. Hence we see that e equalizes ϕ and ψ, although we now need to
demonstrate its universal property.

Now suppose that there exists an object K equipped with a morphism σ : K G such
that ψ ◦ σ = ψ ◦ ϕ.

Ker(ϕ− ψ) G H

K

e

0

ϕ

σ

However, note that
ϕ ◦ σ = ψ ◦ σ =⇒ (ϕ− ψ) ◦ σ = 0.

Since e : Ker(ϕ) G is kernel, we note that its universal property implies that because
(ϕ − ψ) ◦ σ = 0 that there must exists a unique morphism u : K Ker(ϕ) such that
e ◦ u = σ. Thus we have shown the diagram below

Ker(ϕ− ψ) G H

K

e

ϕ

ψ

u σ

must hold so that (Ker(ϕ), e : Ker(ϕ) G), is actually an equalizer! �
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Note that we’ve once more utilized the bilinearity of ◦ to construct the above proof, which
again reminds us that the assumptions we’ve made so far are necessary and useful. The above
proof now motivates the following definition.
Definition 8.3.5. Let C be an additive category. Then we say C is preabelian if it has kernels
and cokernels; or, equivalently, if it has all equalizers and coequalizers.

What we have on our hands now is a very nice category where (1) finite biproducts exist
and (2) all equalizers and coequalizers exist. If we recall from our experience with limits, this
automatically grants us the following proposition.
Proposition 8.3.6. A preabelian category has all finite limits and finite colimits.

Proof. If a category has finite products and equalizers, it has finite limits. If it has finite
coproducts and coequalizers, it has finite colimits. This is Theorem 5.3.1. �

The fact that there exist finite limits and colimits is extremely convenient in preabelian
categories.
Proposition 8.3.7. Let C be a preabelian category. Let J be a connected category and suppose
F : J C is a functor. Then

LimF ∼= ColimF.

Proof. Recall the limit satisfies universal property

∆(LimF ) F

∆(C)

u

∆(h)
f

=⇒

LimF F (i)

C

ui

h
f i

for every object C equipped with a family of morphisms f i : C F (i). Construct the family
of morphisms

f ji =



∅ji : F (i) F (j) if i 6= j

1F (i) if i = j

where ∅ji : F (i) F (j) is the unique zero morphism from F (i) to F (j). Then by the universal
property of the limit, for each i ∈ J , there exists a unique morphism hi : F (i) LimF such
that the diagram below commutes.

LimF F (j)

F (i)

uj

hi
fji

That is, we have uj ◦hi = f ji . We now argue that we have a colimit on our hands. Specifically,
suppose D is an object of C equipped with a family of morphisms gj : F (j) D. Then
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observe that we can supply a morphism
∑

k∈J
gku

k : LimF D

where the addition operation is from the group structure of Hom(LimF,D), such that the
diagram below commutes.

LimF F (j)

D

∑
k∈J gku

k

hj

gj

This diagram commutes since

∑

k∈J
gku

k


 ◦ hj =

∑

k∈J
gk(uk ◦ hj) = gj(uj ◦ hj) = gj

where we utilized the bilinearity of the composition operator. Thus we see that LimF is
behaving just like a colimit!

The only thing we must verify at this point is that this morphism is unique. Towards that
goal, suppose that ` : LimF D is another morphism such that ` ◦ hj = gj. Recall that
ui ◦ hi = 1F (i), so that hi is a monomorphism. Then observe that we can take the image of
the map

hi : F (i) LimF

under the contravariant hom functor to get an epic group homomorphism

Hom(LimF,D) Hom(F (i), D)◦hi

between abelian groups, as ◦ obeys bilinearity properties. By the first isomorphism theorem
we then have that

Hom(F (i), D) ∼= Hom(LimF,C)/Ker(◦hi).
Now we want to show that this map is also injective, because then we could observe that
since 

`−
∑

k∈J
gk ◦ uk


 ◦ hi = 0

that
`−

∑

k∈J
gk ◦ uk = 0.

But it seems like we don’t have enough to show that at the moment...
�
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8.4 Kernels and Cokernels

At this point we’ve discussed preadditive, additive, and preabelian categories, where preabelian
categories are just additive categories with the additional hypothesis that kernels and cokernels
exist. This additional hypothesis is extremely useful, so we will demonstrate what this implies
for us.

Let C be a preabelian category. Consider an arbitrary morphism f : A B. One way
to think about kernels and Cokernels is that they give rise to objects in the comma categories
(C # A) and (B # C).

Ker(f) A B Coker(f)e

0

f
c

Now in the comma category (C # A), a morphism between two objects (C, f : C A) and
(D, g : D A) is a morphism h : D C in C such that f = g ◦ h. Similarly, a morphism
in the comma category (A # C) between two objects (P,m : A P ) and (Q, n : A Q) is a
morphism k : P Q such that n = h ◦m. These relations give rise to the bow-tie diagram:

C P

A

D Q

f

k

m

n

h

g

With that said, we can actually turn these categories into partial orders. In (C # A), we say
g ≤ f if there exists an h such that f ◦ h = g, and in (A # C), we say m ≤ n if there exists a k
such that n = k ◦m.

It turns out that this perspective is actually quite useful.
Proposition 8.4.1. Let C be a category with a zero object, equalizers and coequalizers. Then
for each object A of C, we have the functors

Ker : (A # C) (C # A)
Coker : (C # A) (A # C).

that assign kernels and cokernels. Moreover, these functors establish a antitone Galois corre-
spondence; hence we have that

Ker(Coker(Ker(f))) = Ker(f) Coker(Ker(Coker(f))) = Coker(f).

Therefore, any ϕ is a kernel if and only if ϕ = Ker(Coker(ϕ)), while any ψ is a cokernels if and
only if ψ = Coker(ψ(ψ)).
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Proof. We demonstrate functoriality. First we want our functor to act on objects as

(C, f : A C) 7! (Ker(f), e1 : Ker(f) A).

Now we explain how the functor works on morphisms. Suppose we have two objects of our
comma category (C, f : A C) and (D, g : A D), and that h : D C is a morphism
in (A # C) from (D, g : A D) to (C, f : A C). Then we have the diagram below.

Ker(f) C

A

Ker(g) D

e1
f

ge2

h

Now note that
f ◦ e2 = (h ◦ g) ◦ e2 = h ◦ (g ◦ e2) = 0.

Thus, by the universal property of e1 : Ker(f) A, we know there exists a unique morphism
h′ : Ker(g) Ker(f) such that the diagram below commutes.

Ker(f) C

A

Ker(g) D

e1
f

g

h′

e2

h

However, this is exactly what it means to have a morphism between the objects
(Ker(g), e2 : Ker(g) A) and (Ker(f), e1 : Ker(f) A). Thus we see that our func-
tor maps on morphisms in (A # C) in a nice way:

h 7! h′ : (Ker(g), e2 : Ker(g) A) (Ker(f), e1 : Ker(f) A).

where h′ is the unique map obtained from h as explained above. With the remaining properties
easily verified, this defines a functor between the categories. In addition, we can dualize our
work above to also get the functor Coker : (C # A) (A # C).

Now this creates a Galois correspondence by regarding the comma categories as partially
ordered sets. Suppose that g ≤ Ker(f). That is, there exists a h such that Ker(f) ◦ h = g.
Then we can compare Coker(g) and f by considering the diagram below.

Ker(f) Coker(g)

A

B C

e

f

c

h

g

Now observe that
f ◦ g = f ◦ (e ◦ h) = 0 ◦ h = 0.
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Therefore, by the universal property of the cokernel, we know there exists a unique morphism
h′ : Coker(g) f such that the diagram below commutes. This then implies that f ≤
Coker(g).

Ker(f) Coker(g)

A

B C

e

h′

f

c

h

g

By a similar argument, we have that if f ≤ Coker(g), then g ≤ Ker(f). Hence we have that

g ≤ Ker(f) ⇐⇒ f ≤ Coker(g)

so that, as preorder, the kernel and cokernels functors are adjoint pairs that form an antitone
Galois correspondence. Moreover, this implies that for each f : B A and g : A C,

f ≤ Coker(Ker(f)) g ≤ Ker(Coker(g)).

In particular, if f is the cokernel of some morphism ϕ, and if g is the kernel of some morphism
ψ, then we have that

Coker(ϕ) ≤ Coker(Ker(Coker(ϕ))) Ker(ψ) ≤ Ker(Coker(Ker(ψ))).

However, applying the order reversing functors Coker and Ker on the relations ϕ ≤
Ker(Coker(ϕ)) and ψ ≤ Coker(Ker(ψ)) yields

Coker(Ker(Coker(ϕ))) ≤ Coker(ϕ) Ker(Coker(Ker(ψ))) ≤ Ker(ψ).

Hence we have that Coker(Ker(Coker(ϕ))) ∼= Coker(ϕ) and Ker(Coker(Ker(ψ))) ∼= Ker(ψ)
as desired. �
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8.5 Abelian Categories

Let C be a preabelian category, and consider an arbitrary morphism ϕ : A B. Then, since
we are in an abelian category, we can calculate the kernel and cokernel of this morphism, which
both have their familiar universal properties.

Ker(ϕ) A B Coker(ϕ)

C D

e

∅

ϕ
c

ψ
kϕh

One thing we can do is examine both the kernel and the cokernel of these two morphisms.
Specifically, we can calculate the kernel Ker(c) of c and the cokernel Coker(e) of e. However,
since we have a map ϕ : A B such that c ◦ ϕ = 0, we see that there exists a unique map
u : A Ker(Coker(f)) such that ϕ = e′ ◦u. Dually, since ϕ ◦ e = 0, there exists a unique map
v : Coker(Ker(f)) B. such that ϕ = v ◦ c′.

Ker(Coker(f))

Ker(f) A B Coker(f)

Coker(Ker(f))

C D

e′

e ϕ

u

c′

c

ψ
k

v

ϕh



(σM ,P )n :
⊕

i+j=n

Mi ⊗ Pj →
⊕

i+j=n

Pj ⊗Mi

(m⊗ p) 7−→ kijp⊗m

⊗ =

w
(n)
A

v′A

vA wA

v′′A

A×B A⊗B

G

ϕ

f
hA⊗B

A⊗ (I ⊗B)

(A⊗ I)⊗ (I ⊗ (I ⊗B))

1A⊗λb

ρA⊗λI⊗B

I ⊗A A A⊗ I

I ⊗B B B ⊗ I

λA

1I⊗f f

ρA

f⊗1I

λB
ρB

A⊗ (B ⊗C) (A⊗B)⊗C

A′ ⊗ (B′ ⊗C ′) (A′ ⊗B′)⊗C ′

αA,B,C

f⊗(g⊗h) (f⊗g)⊗h

αA′,B′,C′9. Operads

9.1 Operads on Sets

Let Y, Z be sets. Consider a function g : Y Z. The way we’ve been taught to think about
this function is as a process where we’re sending an element y 7! g(y) in a well-defined manner.

gy g(y)
input output

The typical picture one uses when describing a function.

Furthermore, if we have another function f : X Y , then we can set up a pipeline
x 7! f(x) 7! g(f(x)). This then establishes an obvious function g ◦ f : X Z.

f gy g(f(y))
input output

The function g ◦ f .
But the way that we’ve thought about functions, and more generally morphisms, is actually

over-simplistic. Here we will demonstrate that we can generalize the concept of morphism
composition.

Denote Endn(X) to be the set of all functions f : Xn X. Then for such a function, if
we stick with our simplistic concept of plugging things in, we imagine something like

f(x1, . . . , xn) f(x1, . . . , xn)
input output

However, a more natural way is to imagine that we’re taking values n-many values xi ∈ X
and plugging them into the function f : Xn X. That is, we don’t have to just think of one
g : Y Xn to form a concept of composition. We can instead imagine that each of these xi
values came from functions g1 : Y1 X, g2 : Y2 X, · · · , gn : Yn X.
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Y1 Y2 · · · Yn

X ×X × · · · ×X

X

g1 g2 gn

f

This is in its own right a function; a function from Y1 × Y2 × Yn X. It’s a generalization
of function composition; when we only have one g1 we just get back our original notion of
function composition. We’ve been restricting ourselves this whole time. Now to make this even
more interesting, suppose Y1 = Xa1 , Y2 = Xa2 , . . . , Yn = Xan where a1, a2, . . . , an are positive
integers. That is, suppose we have that gi ∈ Endai(X).

Xa1 Xa2 · · · Xan

X ×X × · · · ×X

X

g1 g2 gn

f

The above composition can be expressed as f(g1, g2, . . . , gn) which we may denote as

f ◦a1,a2,...,an (g1, g2, . . . , gn) : Xa1 ×Xa2 × · · · ×Xan X.

and note that we’ve construction a function in Enda1+a2+···+an(X) using one f ∈ Endn(X) and
n-many gi ∈ Endi(X). Then what we see is that our composition map is really a function that
can be written formally as

◦a1,a2,...,an : Xn × (Xa1 ×Xa2 × · · · ×Xan) Xa1+a2+···+an

Then we can make this even more interesting. Each gi : Xai X is just like f : Xn X.
Hence we can repeat the same process on each gi, and plug a family of functions hi,j : Xki,j X

where j = 1, 2, . . . , ai.

Xk1,1 , Xk1,2 , . . . , Xk1,a1 Xk2,1 , Xk2,2 , . . . , Xk2,a2 · · · Xkn,1 , Xkn,2 , . . . , Xk1,an

X ×X ×
a1-times
· · · ×X X ×X ×

a2-times
· · · ×X · · · X ×X ×

an-times
· · · ×X

X ×X × · · · ×X

X

h1,1 h1,2 h1,a1 h2,1 h2,2 h2,a2 hn,1 hn,2 hn,an

g1 g2 gn

f
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Now there are two ways to think about this function. There is

[f ◦a1,a2,...,an (g1, g2, . . . , gn)] ◦k1,1,...,k1,a1 ,...,kn,a1 ,...,kn,an
(h1,1, . . . , hn,an)

which first composes f with the g-family, and then composes with the h-family, and then there
is

f ◦(k1,1+···+k1,a1 ),...,(kn,1+···+kn,an )
(
g1 ◦k1,1,...,k1,a1

(h1,1, . . . , h1,a1), . . . , gn ◦kn,1,...,kn,an (hn,1, . . . , hn,an)
)

which first composes each g with its respective h-family, and then composing the resulting
structure with f . Since these are just functions, and individual composition is associative, the
above two ways are the same. This construction which we have demonstrated is an example
of an operad; specifically, a symmetric operad. The previous example can now be seen as
motivation for the following two definitions (which will definitely need repeated read-overs).
Definition 9.1.1. A nonsymmetric operad X in Set consists of a family of sets {Xn}∞n=1,
an identity element I ∈ X1 (whose purpose will soon be elaborated), and a composition map

◦n,a1,a2,...,an : Xn × (Xa1 ×Xa2 × · · · ×Xan) Xa1+a2+···+an

(f, g1, g2, . . . , gn) 7! f ◦a1,a2,...,an (g1, g2, . . . , gn)

which must exist for each n = 1, 2, . . . , and any a1, a2, . . . , an ∈ N, such that
(NS-OP1: Associativity.) Let n ∈ N and consider f ∈ Xn. Let a1, a2 . . . , an ∈ N. Then

[f ◦a1,a2,...,an (g1, g2, . . . , gn)] ◦k1,1,...,k1,a1 ,...,kn,a1 ,...,kn,an
(h1,1, . . . , hn,an)

=
f ◦(k1,1+···+k1,a1 ),...,(kn,1+···+kn,an )

(
g1 ◦k1,1,...,k1,a1

(h1,1, . . . , h1,a1), . . . , gn ◦kn,1,...,kn,an (hn,1, . . . , hn,an)
)

(NS-OP2): Identity. For every f ∈ Xn we have that

f ◦1,1,...,1 (I, I, . . . , I) = f = I ◦n (f).

Definition 9.1.2. A symmetric operad is a nonsymmetric operad X with a right group
action ·n : Xn × Sn Xn by the symmetric group Sn for each n = 1, 2, . . . , subject to the
following axioms.
(S-OP1: Equivariance 1) Let f ∈ Xn and pick g1 ∈ Xa1 , . . . , gn ∈ Xan for some a1, a2, . . . , an ∈

N. Then for a τ ∈ Sn, we must have

(f · τ) ◦a1,...,an (g1, . . . , gn) = (f ◦aτ−1(1),...,aτ−1(n)
(gτ−1(1), . . . , gτ−1(n))) · τ ′

where τ ′ ∈ Sa1+···+an . Here, τ ′ is a block permutation that swaps the i-th block with the
τ(i)-th block. That is, if τ ∈ Sn as a permutation acts as

(1, 2, . . . , n) 7! (τ(1), τ(2), . . . , τ(n))
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then τ ′ ∈ Sa1+a2+···+an acts as

(
1st block︷ ︸︸ ︷

1, 2, . . . , a1, . . . ,

i-th block︷ ︸︸ ︷
a1 + · · ·+ ai + 1, . . . a1 + · · ·+ ai+1, . . .

n-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, . . . , a1 + · · ·+ an)

7!

(. . . ,
τ(1)-th block︷ ︸︸ ︷
1, 2, . . . , a1, . . . ,

τ(i)-th block︷ ︸︸ ︷
a1 + · · ·+ ai + 1, . . . , a1 + · · ·+ ai+1, . . . ,

τ(n)-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, . . . , a1 + · · ·+ an, . . . ).

(S-OP2: Equivariance 2) Let f, gi is as above, and choose σ1 ∈ S1, . . . , σn ∈ Sn. Then we
have that

f ◦a1,...,an (g1 · σ1, . . . , gn · σn) = (f ◦a1,...,an (g1, . . . , gn)) · (σ1, . . . , σn)

where (σ1, σ2, . . . , σn) ∈ Sa1+a2+···+an is the permutation described as below.

(
1st block︷ ︸︸ ︷

1, 2, . . . , a1, . . . ,

n-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, , . . . , a1 + · · ·+ an−1an)

7!

(σ1(1), σ1(2), . . . , σ1(a1)
︸ ︷︷ ︸

1st block

, . . . , a1 + · · ·+ an−1+σn(1), . . . , a1 + · · ·+ an−1+σn(an)
︸ ︷︷ ︸

n-th block

)

Example 9.1.3. We can continue with our previous construction concerning the family of sets

Endn(X) = {f : Xn X | f ∈ Set}

to demonstrate that it forms a symmetric operad. As we already established associativity NS-
OP1, we need to verify the identity axiom NS-OP2. Such an identity element can be chosen
if we select I = 1X : X X. On one hand we have for any f ∈ Xn that

f ◦1,1,...,1 (I, I, . . . , I) = f(1x, 1x, . . . , 1x) = f

while on the other we have that I ◦n f = 1X ◦ f = f . Next, define a group action of Sn on
Endn(X) as

(f · σ)(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

We now verify S-OP1 with this group action. Let f ∈ Endn(X) and gi ∈ Endi(X) for i =
1, 2, . . . , n. For a given τ ∈ Sn, consider the points (x1, . . . , a1) ∈ Xa1 , . . . , (x1, . . . , an) ∈ Xan .
Observe that (f · τ) ◦a1,...,an (g1, . . . , gn) first plugs in the each (xai−1, . . . , xai) into gi, which is
then plugged into f . However, the action of τ swaps these resulting coordinates. Thus we get
that

(f · τ) ◦a1,...,an (g1, . . . , gn)(x1, . . . , a1, . . . , xan−1+1, . . . , xan) = (. . . ,
τ(i)−th entry︷ ︸︸ ︷

gi(xai−1+1, . . . , xai), . . . )
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How do we write this more formally? Well, to answer that, we need to know the answer to
the following question: which gi(xai−1+1, . . . , xai) maps to, say, the 1st coordinate? This is
equivalently to asking: what is τ−1(1)? Hence we see that

(f · τ) ◦a1,...,an (g1, . . . , gn)(x1, . . . , a1, . . . , xan−1+1, . . . , xan)
= f(gτ−1(1)(xaτ−1(1)−1+1, . . . , xaτ−1(1)

), . . . , gτ−1(n)(xaτ−1(n)−1+1, . . . , xaτ−1(n)
))

= f ◦τ−1(1),τ−1(2),...,τ−1(n) (gτ−1(1), gτ−1(2), . . . , gτ−1(n))(xaτ−1(1)−1+1, . . . , xaτ−1(1)
, . . . , xaτ−1(n)−1+1, . . . , xaτ−1(n)

)

=
(
f ◦τ−1(1),τ−1(2),...,τ−1(n) (gτ−1(1), gτ−1(2), . . . , gτ−1(n)) · τ ′

)
(x1, . . . , xa1 , . . . , xan−1+1, . . . , xan).

where τ ′ is the block permutation described in the definition. Thus we see that

(f · τ) ◦a1,...,an (g1, . . . , gn) = f ◦τ−1(1),τ−1(2),...,τ−1(n) (gτ−1(1), gτ−1(2), . . . , gτ−1(n)) · τ ′

as desired. Thus we have S-OP1. Finally, we show S-OP2, which is a bit easier to demonstrate.
As before, let f, ai and gi be as described before. Let σ1 ∈ S1, . . . , σn ∈ Sn. Then

f ◦a1,...,an (g1 · σ1, . . . , gn · σn)(x1, . . . , xa1 , . . . , xan−1+1, . . . , xan)

= f
(

(g1 · σ1)(x1, . . . , xa1), . . . , (gn · σn)(xan−1+1, . . . , xan)
)

= f
(
g1(xσ1(1), . . . , xσ1(a1)), . . . , gn(xσn(1), . . . , xσn(an))

)

=
(
f ◦a1,...,an (g1, . . . , gn)

)
(xσ1(1), . . . , xσ1(a1), . . . , xσn(1), . . . , xσn(an))

=
(
f ◦a1,...,an (g1, . . . , gn)

)
· (σ1, . . . , σn)(x1, . . . , xa1 , . . . , xan−1+1, . . . , xan)

Thus we see that

f ◦a1,...,an (g1 · σ1, . . . , gn · σn) = (f ◦a1,...,an (g1, . . . , gn)) · (σ1, . . . , σn)

so that S-OP2 is satisfied. All together, we have that for any set X, the family of sets Endn(X)
forms a symmetric operad.

Example 9.1.4. Consider the family of sets Assocn = Sn where each level is the n-th symmetric
group. Suppose that τ ∈ Sn and that σ1 ∈ Sa1 , σ2 ∈ Sa2 , . . . , σn ∈ San for a1, a2, . . . , an ∈ N.
Then we define

τ ◦a1,...,an (σ1, σ2, . . . , σn) ∈ Sa1+a2+···+an

as a permutation of a1+a2+· · ·+an letters. Before we describe the permutation, we’ll introduce
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some notation. Consider the (ordered) tuple of the first a1 + · · ·+ an integers.

(1, 2, . . . , a1, a1 + 1, a1 + 2, . . . , a1 + a2, . . . (a1 + · · ·+ an−1) + 1, . . . , (a1 + · · ·+ an−1) + an)

We can more compactly denote this tuple as

(1, 2, . . . , a1, 1′, 2′, . . . , a′2, . . . , 1′, 2′, . . . , a′n)

where from either context or coloring it will be clear what each 1′, 2′, . . . indicates. For ex-
ample, above we’ll have that 1′ = a1 + 1 and 2′ = a1 + 2 wheres 1′ = (a1 + · · ·+ an−1) + 1 and
2′ = (a1 + · · ·+ an−1) + 2. With that said, we can define τ◦a1,...,an(σ1, σ2, . . . , σn) ∈ Sa1+a2+···+an
by its action on such a tuple, pictured below.

(1, 2, . . . , a1, 1′, 2′, . . . , a′2, . . . , 1′, 2′, . . . , a′n)

(σ1(1), σ1(2)), . . . σ1(a1)
︸ ︷︷ ︸

1st block

, σ′1(1), σ′1(2)), . . . σ′1(a1)
︸ ︷︷ ︸

2nd block

, . . . , σ′n(1), σ′n(2) . . . , σ′n(an)
︸ ︷︷ ︸

an-th block

)

(. . . , σ1(1), σ1(2)), . . . σ1(a1)
︸ ︷︷ ︸

τ(1)-th block

, . . . , σ′1(1), σ′1(2)), . . . σ′1(a1)
︸ ︷︷ ︸

τ(2)-th block

, . . . , σ′n(1), σ′n(2), . . . , σ′n(an)
︸ ︷︷ ︸

τ(an)-th block

, . . . , )

σ1 σ2 . . . σn

τ

which can be rewritten more formally as

(
1st block︷ ︸︸ ︷

σ′τ−1(1)(1), σ′τ−1(1)(2), . . . , σ′τ−1(1)(aτ−1(1)), . . . ,
n-th block︷ ︸︸ ︷

σ′τ−1(n)(1), σ′τ−1n(2), . . . , σ′τ−1(n)(aτ−1(n))) ∈ Sa1+···+an .

Now for each σi ∈ Sai , let ρi,j ∈ Ski,j for j = 1, 2, . . . , ai and for ki,j ∈ N. For notational
convenience, denote K = k1,1 + · · ·+ k1,a1 + · · ·+ kn,1 + · · ·+ kn,an . By our above definition, we
can construct a permutation in SK by composing τ with the σ-family and with the ρ-family.
There are two possible ways to construct such a permutation (and we’ll show that they are
equivalent, therefore satisfying NS-OP1). But before we do that we must consider the first K
integers. This will be a huge tuple; in full notation this is
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( 1st block︷ ︸︸ ︷
1, 2, . . . , k1,1,

2nd block︷ ︸︸ ︷
k1,1 + 1, k1,1 + 2, . . . , k1,1 + k1,2, . . .

. . .

a1-th block︷ ︸︸ ︷
(k1,1 + k1,2 + · · ·+ k1,a1−1) + 1, (k1,1 + k1,2 + · · ·+ k1,a1−1) + 2, . . . , (k1,1 + k1,2 + · · ·+ k1,a1−1) + k1,a1 . . .

. . .

(a1+a2+···+an−1+1)-th block︷ ︸︸ ︷
n−1∑

i=1

ai∑

j=1
ki,j + 1

n−1∑

i

ai∑

j=1
ki,j + 2, . . . ,

n−1∑

i

ai∑

j=1
ki,j + kn,1, . . .

. . . ,

(a1+a2+···+an−1+an)-th block︷ ︸︸ ︷
n−1∑

i

ai∑

j=1
ki,j + (kn,1 + · · ·+ kn,(an−1)) + 1,

n−1∑

i

ai∑

j=1
ki,j + (kn,1 + · · ·+ kn,(an−1)) + 2, . . . ,

n∑

i

ai∑

j=1
ki,j

)

Using our previous notation we can rewrite this as

(
1st block︷ ︸︸ ︷

1, 2, . . . , k1,1,

2nd block︷ ︸︸ ︷
1′, 2′, . . . , k1,2, . . . ,

a1-th block︷ ︸︸ ︷
1′, 2′, . . . , k1,a1 , . . . ,

(a1+···+an−1+1)-th block︷ ︸︸ ︷
1′, 2′, . . . , kn,1 , . . . ,

(a1+···+an)-th block︷ ︸︸ ︷
1′, 2′, . . . , kn,an )

where again, for example, 1′ = k1,1 + 1 whereas 1′ =
n−1∑

i

ai∑

j=1
ki,j + (kn,1 + · · ·+ kn,(an−1)) + 1.

Now we will first want to calculate

(τ ◦a1,...,an (σ1, σ2, . . . , σn)) ◦k1,1,...,k1,a1 ,...,kn,1,...,kn,an
◦(ρ1,1, . . . , ρn,an).

The first step to computing this is to note that each ρi,j permutes the numbers within its block.

(
1st block︷ ︸︸ ︷

1, 2, . . . , k1,1,

2nd block︷ ︸︸ ︷
1′, 2′, . . . , k1,2, . . . ,

(a1+···+ai−1+j)-th block︷ ︸︸ ︷
1′, 2′, . . . , ki,j , . . . ,

(a1+···+an)-th block︷ ︸︸ ︷
1′, 2′, . . . , kn,an )

(ρ1,1(1), ρ1,1(2), . . . , ρ1,1(k1,1)
︸ ︷︷ ︸

1st block

, . . . , ρ′i,j(1)ρ′i,j(2), . . . , ρ′i,j(ki,j)︸ ︷︷ ︸
(a1+···+ai−1+j)-th block

, . . . , ρ′n,an(1), ρ′n,an(2), . . . , ρ′n,an(kn, an)
︸ ︷︷ ︸

(a1+···+an)-th block

))

ρ1,1ρ1,1 . . . ρi,j ... ρn,an

Now that we’ve applied the ρ permutations, we must apply the permutation τ◦a1,...,an(σ1, σ2, . . . , σn)
in Sa1+···+an . This will instead be a block permutation. Hopefully it is now clear why we were
paying so much attention and to and keeping track of the blocks; we knew ahead of time
that we were going to permute our a1 + · · · + an blocks by using our Sa1+·+an permutation
τ ◦a1,...,an (σ1, σ2, . . . , σn) in Sa1+···+an .

Recall that for ρi,j, i ranges from 1 to n while j ranges from 1 to ai. Hence if we permute a
block, we can represent it as follows.
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(ρ1,1(1), ρ1,1(2), . . . , ρ1,1(k1,1)
︸ ︷︷ ︸

1st block

, . . . , ρ′i,j(1)ρ′i,j(2), . . . , ρ′i,j(ki,j)︸ ︷︷ ︸
(a1+···+ai−1+j)-th block

, . . . , ρ′n,an(1), ρ′n,an(2), . . . , ρ′n,an(kn,an)
︸ ︷︷ ︸

(a1+···+an)-th block

))

(. . . , ρ1,1(1), ρ1,1(2), . . . , ρ1,1(k1,1)
︸ ︷︷ ︸
τ◦a1,...,an (σ1,σ2,...,σn)(1)th block

, . . . , ρ′n,an(1), ρ′n,an(2), . . . , ρ′n,an(kn, an)
︸ ︷︷ ︸
τ◦a1,...,an (σ1,σ2,...,σn)(a1+···+an)-th block

, . . . , )

which can be written more formally (that is, more horribly) as

(. . . , ρτ−1(i),σ−1
τ−1(i)

(j)(1), ρτ−1(i),σ−1
τ−1(i)

(j)(2), . . . , ρτ−1(i),σ−1
τ−1(i)

(j)(kτ−1(i),σ−1
τ−1(i)

(j))
︸ ︷︷ ︸

(a1+···+ai−1+j)-th block

, . . . )

At this point we’ll want to see that this is the same as

τ ◦(k1,1+···+k1,a1 ),...,(hn,1+···+kn,an ) (σ1 ◦k1,1,...,k1,a1
(ρ1,1, . . . , ρ1,a1), . . . , σn ◦kn,1,...,kn,an (ρn,1, . . . , ρn,an))

To do this we need to think about each σi ◦ki,1,...,ki,ai (ρi,1, . . . , ρi,ai) which isn’t too bad. Each
is a permutation in Ski,1+···+ki,ai , and hence a permutation of the (ordered) tuple below.

(1, 2, . . . , ki,1, ki,1 + 1, ki,1 + 2, . . . , ki,1 + ki,2, . . . , (ki,1 + ki,2 + · · ·+ ki,ai−1) + 1, . . . , (ki,1 + ki,2 + · · · ) + ki,ai)

which we again abbreviate as

(1, 2, . . . , ki,1, 1′, 2′, ki,2, . . . , 1′, 2′, . . . , ki,ai).

With those notation above each permutation acts as

(
1st block︷ ︸︸ ︷

1, 2, . . . , ki,1,
2nd block︷ ︸︸ ︷

1′, 2′, ki,2, . . . ,
ai-th block︷ ︸︸ ︷

1′, 2′, . . . , ki,ai)

(. . . ,
σi(1)-th block︷ ︸︸ ︷

ρi,1(1), ρi,1(2), . . . , ρi,1(ki,1), . . . ,
σi(ai)-th block︷ ︸︸ ︷

ρ′i,ai(1), ρ′i,ai(2), . . . , ρ′i,ai(ki,ai), . . . )

which can be more formally understood as the tuple

(
1st tuple︷ ︸︸ ︷

ρ′
i,σ−1

i (1)(1), ρ′
i,σ−1

i (1)(2), . . . , ρ′
i,σ−1

i (1)(ki,σ−1
1 (1)), . . . ,

ai-th tuple︷ ︸︸ ︷
ρ′
i,σ−1

i (ai)(1), ρ′
i,σ−1

i (ai)(2), . . . , ρ′
i,σ−1

i (ai)(ki,σ−1
i (ai)))
(9.1)

Now that we understand what each σi ◦ki,1,...,ki,ai (ρi,1, . . . , ρi,ai) does for i = 1, 2, . . . , n, and
because we know that τ ∈ Sn, this means we can compose τ with this family of n-permutations,
which will give rise to a Sk1,1+···+k1,a1+···+kn,1+···+kn,an permutation. To calculate this we just now
directly apply their composition. This will act on the k1,1 + · · · k1,a1 + · · · + kn,1 + · · · + kn,an
tuple
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(
1st block︷ ︸︸ ︷

1, 2, . . . , k1,1,

2nd block︷ ︸︸ ︷
1′, 2′, k1,2, . . . ,

a1-th block︷ ︸︸ ︷
1′, 2′, . . . , k1,a1︸ ︷︷ ︸

1st n-block

, . . . ,

(a1+···+an−1+1)-th block︷ ︸︸ ︷
1, 2, . . . , kn,1 , 1′, 2′, . . . , kn,2︸ ︷︷ ︸

(a1+···+an−1+2)-th block

, . . . ,

(a1+···+an−1+an)-th block︷ ︸︸ ︷
1′, 2′, . . . , ki,ai

︸ ︷︷ ︸
n-th n-block

)

by rearranging the tuple as below

(. . . , . . . ,
σ1(1)-block︷ ︸︸ ︷

ρ1,1(1), ρ1,1(2), . . . , ρ1,1(k1,1), . . . ,
σ1(a1)-block︷ ︸︸ ︷

ρ′1,a1(1), ρ′1,a1(2), . . . , ρ′1,a1(k1,a1), . . .
︸ ︷︷ ︸

τ(1)-th n-block

. . . , . . . ,

σn(1)-block︷ ︸︸ ︷
ρn,1(1), ρn,1(2), . . . , ρn,1(kn,1), . . . ,

σn(an)-block︷ ︸︸ ︷
ρn,an(1), ρn,an(2), . . . , ρn,an(kn,an), . . .

︸ ︷︷ ︸
τ(n)-th n-block

)

and using (9.1) we know that this becomes

(. . . ,
(a1+···+aτ(1)−1+1)-th tuple

︷ ︸︸ ︷
ρ1,σ−1

1 (1)(1), ρ1,σ−1
1 (1)(2), . . . , ρ1,σ−1

1 (1)(k1,σ−1
1 (1)), . . . ,

(a1+···+aτ(1)−1+aτ(1))-th tuple
︷ ︸︸ ︷
ρ1,σ−1

1 (a1)(1), ρ1,σ−1
1 (a1)(2), . . . , ρ1,σ−1

1 (a1)(k1,σ−1
1 (a1))︸ ︷︷ ︸

τ(1)-th n-block

. . . ,

(a1+···+aτ(1)−1+1)-th tuple
︷ ︸︸ ︷
ρn,σ−1

n (1)(1), ρn,σ−1
n (1)(2), . . . , ρn,σ−1

n (1)(kn,σ−1
n (1)), . . . ,

(a1+···+aτ(1)−1+aτ(1))-th tuple
︷ ︸︸ ︷
ρn,σ−1

n (an)(1), ρn,σ−1
n (an)(2), . . . , ρn,σ−1

n (an)(kn,σ−1
n (an))︸ ︷︷ ︸

τ(n)-th n-block

)

The above tuple can be (again, horribly) understood as

(. . . , ρτ−1(i),σ−1
τ−1(i)

(j)(1), ρτ−1(i),σ−1
τ−1(i)

(j)(2), . . . , ρτ−1(i),σ−1
τ−1(i)

(j)(kτ−1(i),σ−1
τ−1(i)

(j))
︸ ︷︷ ︸

(a1+···+ai−1+j)-th block

, . . . )

Which shows that

(τ ◦a1,...,an (σ1, σ2, . . . , σn)) ◦k1,1,...,k1,a1 ,...,kn,1,...,kn,an
◦(ρ1,1, . . . , ρn,an)

=
τ ◦(k1,1+···+k1,a1 ),...,(hn,1+···+kn,an ) (σ1 ◦k1,1,...,k1,a1

(ρ1,1, . . . , ρ1,a1), . . . , σn ◦kn,1,...,kn,an (ρn,1, . . . , ρn,an))

so thatNS-OP1 is satisfied. Now verifyingNS-OP2 is simple; note that as S1 has one element,
we are forced to identify our identity element as σ1, the unique permutation of one element that
doesn’t do anything. Then for any τ ∈ Sn, we of course have that τ ◦1,1,...,1 (σ1, σ1, . . . σ1) = τ ,
as each element is unchanged by σ1 before τ is applied. We also know that σ1 ◦n (τ) = τ , since
this is just applying τ and then applying the trivial block permutation to the n elements.
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Now we show S-OP1. As we need a right action of Sn on the n-th level of our operad,
which also happens to be Sn, an evident choice would be to just take the group product. Hence
for any σ ∈ Sn, we say τ ∈ Sn acts on σ to give rise to

(σ · τ) = σ ◦ τ

which is clearly in Sn.
To demonstrate S-OP1, let τ, ρ ∈ Sn, and σ1 ∈ Sa1 , . . . , σn ∈ San for ai ∈ N. To compute

(τ · ρ) ◦a1,...,an (σ1, . . . , σn), denote an (ordered) tuple of the first a1 + · · ·+ an integers as

(1, 2, . . . , a1, . . . , 1′, 2′, . . . , an).

Then we see that (τ · ρ) ◦a1,...,an (σ1, . . . , σn) acts on the tuple to give rise to

(σ′ρ−1(τ−1(1))(1), . . . , σ′ρ−1(τ−1(1))(aρ−1(τ−1(1))), . . . , σ′ρ−1(τ−1(n))(1), . . . , σ′ρ−1(τ−1(n))(aρ−1(τ−1(n))))

On the other hand we need to also compute (τ ◦aρ−1(1),...,aρ−1(n)
(σρ−1(1), . . . , σρ−1(n)))·ρ′ where ρ′ is

the evident block permutation. However, this is really just (τ◦aρ−1(1),...,aρ−1(n)
(σρ−1(1), . . . , σρ−1(n)))◦

ρ′; below we see that its action on an ordered a1 + · · ·+ an tuple is as we would expect.

(1, 2, . . . , a1, . . . , 1′, 2′, . . . , an)

(1′, 2′, . . . , aρ−1(1), . . . , 1′, 2′, . . . , aρ−1(n))

(σ′ρ−1(τ−1(1))(1), . . . , σ′ρ−1(τ−1(1))(aρ−1(τ−1(1))), . . . , σ′ρ−1(τ−1(n))(1), . . . , σ′ρ−1(τ−1(n))(aρ−1(τ−1(n))))

ρ′

(τ◦a
ρ−1(1),...,aρ−1(n)

(σρ−1(1),...,σρ−1(n)))

Therefore we see that

(τ · ρ) ◦a1,...,an (σ1, . . . , σn) = (τ ◦aρ−1(1),...,aρ−1(n)
(σρ−1(1), . . . , σρ−1(n))) · ρ′

so that S-OP1 is satisfied. We just now need to show S-OP2 is satisfied, which is nearly
immediate. We will however not pretend we’re too good to show this and demonstrate it
anyways. For each σi ∈ Sai , pick ρi ∈ Sai . Observe that τ ◦a1,...,an (σ1 · ρ1, . . . , σn · ρn)

(1, 2, . . . , a1, . . . , 1′, 2′, . . . , an)

(
1st block︷ ︸︸ ︷

στ−1(1)(ρτ−1(1)(1)), στ−1(1)(ρτ−1(1)(2)), . . . , στ−1(1)(ρτ−1(1)(aτ−1(1))), . . .

. . . ,

n-th block︷ ︸︸ ︷
στ−1(n)(ρτ−1(n)(1)), στ−1(n)(ρτ−1(n)(2)), . . . , στ−1(n)(ρτ−1(n)(aτ−1(n)))

(τ ·ρ)◦a1,...,an (σ1,...,σn)

returns the same result as (τ ◦a1,...,an (σ1, . . . , σn)) · (ρ1, . . . , ρn)
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(1, 2, . . . , a1, . . . , 1′, 2′, . . . , an)

(ρ−1
1 (1), ρ−1

1 (2), . . . , ρ−1
1 (a1), . . . , ρ−1

n (1), ρ−1
n (2), . . . , ρ−1

n (an))

(
1st block︷ ︸︸ ︷

στ−1(1)(ρτ−1(1)(1)), στ−1(1)(ρτ−1(1)(2)), . . . , στ−1(1)(ρτ−1(1)(aτ−1(1))), . . .

. . . ,

n-th block︷ ︸︸ ︷
στ−1(n)(ρτ−1(n)(1)), στ−1(n)(ρτ−1(n)(2)), . . . , στ−1(n)(ρτ−1(n)(aτ−1(n)))

(ρ1,...,ρn)

τ◦a1,...,an (σ1,...,σn)

since (τ ◦a1,...,an (σ1, . . . , σn)) · (ρ1, . . . , ρn) = (τ ◦a1,...,an (σ1, . . . , σn)) ◦ (ρ1, . . . , ρn) in our case.
As we have that S-OP2 is satisfied, we have that Assocn = Sn is a symmetric operad.

Definition 9.1.5. An morphism of operads F : X Y between two (symmetric) operads
X, Y with units I ∈ X1 and J ∈ Y1 and Sn group actions · and ∗ is a family of maps Fn :
Xn Yn such that
(M-OP1) F1(I) = J

(M-OP2) If f ∈ Xn and g1 ∈ Xa1 , . . . , gn ∈ Xan for ai ∈ N, then

Fa1+···+an(f ◦a1,...,an (g1, . . . , gn)) = Fn(f) ◦a1,...,an (Fa1(g1), . . . , Fan(gn))

(M-OP3) If f ∈ Xn and τ ∈ Sn, then

Fn(f · τ) = Fn(f) ∗ τ

Note: in the case where X, Y are symmetric operads, we define a morphism between X and
Y to be a family of maps Fn : Xn Yn such that only M-OP1 and M-OP2 hold.
Definition 9.1.6. A algebra over an Operad X is a morphism of operads F : X EndA
where A is some set. Spelled out, this is a mapping

Fn : Xn HomSet(An, A)
f 7! Fn(f) : An A

so that we’re mapping elements of our operad to n-ary operations over A. This mapping also
requires that

1. F1(I) = idA : A A

2. For f ∈ Xn, gi ∈ Xai for i = 1, 2, . . . , n,

Fa1+···+an(f ◦a1,...,an (g1, . . . , gn)) = Fn(f) ◦′a1,...,an (Fa1(g1), . . . , Fan(gn)).

Diagrammatically, this means the following diagrams commutes:
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Xn × (Xa1 × · · · ×Xan) Hom(An, A)× (Hom(Aa1 , A)× · · · × Hom(Aan , A))

Xa1+···+an Hom(Aa1+···+an , A)

(Fn,Fa1 ,...,Fan )

◦a1,...,an ◦′a1,...,an

Fa1+···+an

Or, more visually,

Aa1 × Aa2 × · · · × Aan

A

F (f◦a1,...,an (g1,...,gn)) =

Aa1 Aa2 · · · Aan

A× A×
n times
· · · ×A

A

Fa1 (g1)
. . .

Fan (gn)

F (f)

3. Finally, we have that if τ ∈ Sn, then for f ∈ Xn and (a1, . . . , an) ∈ An, then

Fn(f · τ)(a1, . . . , an) = (Fn(f) ∗ τ)(a1, . . . , an) = Fn(f)(aτ(1), . . . , aτ(n)).

Definition 9.1.7. Let X be an operad. A morphism Φ : F G between algebras
F : X EndA and G : X EndB over X is a function ϕ : A B such that, for f ∈ Xn

and (a1, . . . , an) ∈ An,

ϕ(Fn(f)(a1, . . . , an)) = G(f)(ϕ(a1), . . . , ϕ(an))

The above relation can be more conveniently expressed as the diagram below commuting:

An A

Bn B

(ϕ,ϕ,...,ϕ)

Fn(f)

ϕ

Gn(f)

which must hold for all f ∈ Xn with n ∈ N. Now suppose that for an operad X we have
three algebras

F : X EndA G : X EndB H : X EndC

such that Φ : F G and Ψ : G H are morphisms of algebras
given by functions ϕ : A B and ψ : B C. A natural question
is whether or not one can define a morphism Ψ ◦ Φ : F G.
This is however immediate upon realization that we can stack the
diagrams to see that Φ ◦Ψ : F H is a morphism of algebras.

An A

Bn B

Cn C

(ϕ,ϕ,...,ϕ)

Fn(f)

ϕ

Gn(f)

(ψ,ψ,...,ψ) ψ

Hn(Gn(f))
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As a result, if we are given an operad X, we can create a category AlgX whose objects are
algebras Φ : X EndA and whose morphisms are morphisms between such algebras. These
categories actually return ordinary categories that we’ve dealt with in the past.

Example 9.1.8. Consider the operad Assocn = Sn. Then we have that

AlgAssocn
∼= Mon

where Mon is the category of monoids. (In terms of set theory, we’re being sloppy; but if
anyone challenges this we can just pull out a Grothendieck universe and satisfy their demands.)
To demonstrate this isomorphism we must produce a pair of inverse functors between these
categories.

Before we do that, first consider an object in this category, which is a family of functions
Fn : Sn HomSet(An, A) for some set A. To save some space, denote HomSet(An, A) as
[An, A]. Then the fact that F : Assocn EndA is an algebra gives us that the diagram on
the left commutes.

S2 × (S2 × S1) [A2, A]×
(
[A2, A],×[A,A]

)

S3 Hom(A3, A)

(e2, e2, e1) (µ2, µ2, idA)

e3 µ3 = µ2(µ2, idA)

As this diagram commutes, we can follow the specific path which is taken by the identity
elements e2 ∈ S2 and e1 ∈ S1. If we denote Fn(en) = µn : An A, then we see that
µ3 = µ2(µ2, idA). Note that in particular, µ1 = idA by hypothesis. Hence for a, b, c ∈ A, we see
that µ3 = µ2(µ2(a, b), c). Conversely, we can repeat the same thing with S1 and S2 swapped,
and obtain a commutative diagram on the left:

S2 × (S1 × S2) [A2, A]×
(
[A,A],×[A2, A]

)

S3 Hom(A3, A)

(e2, e1, e2) (µ2, idA, µ2)

e3 µ3 = µ2(idA, µ2)

and following the identity elements again grants us that µ3 = µ2(idA, µ2). Hence we see that
for a, b, c ∈ A µ3(a, b, c) = µ2(a, µ2(b, c)). All together we have that

µ2(µ2(a, b), c) = µ2(a, µ2(b, c)).

What does this mean? Perhaps this will make it more clear: denote µ2(a, b) = a · b. Then this
means that

(a · b) · c = a · (b · c).
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This means that we’ve proved that A is a set equipped with a binary operator µ2 : A×A A

which is associative! This is almost a monoid; we’re just missing an identity element. However,
note that
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9.2 General Operads in Symmetric Monoidal Categories

Every time we find ourselves working in Set, we should feel a great deal of shame and embar-
rassment. Before anyone catches us, we can atone for our sins by drawing diagrams that avoid
specific reference to the element of the sets, thereby transitioning our work to an arbitrary
category. Given our previous work, we can do this; but what were the main ingredients? Note
that we basically only needed the properties of Set and its cartesian product. Given this, and
the fact that Set is symmetric monoidal given the cartesian product, we can largely generalize
our previous work to arbitrary symmetric monoidal categories.
Definition 9.2.1. Let (C,⊗, I) be a symmetric monoidal category. A (symmetric) operad X

over C is a family of objects {Xn}n∈N, in C, where each Xn has a group action by Sn and with

1. A unit morphism η : I X1

2. For each n ∈ N and ai ∈ N where i = 1, 2, . . . , n, a composition morphism

µ : Xn ⊗Xa1 ⊗ · · · ⊗Xan Xa1+···+an

subject to the associativity, identity, and equivariance axioms outlined below.
(OP1) Associativity. Let n ≥ 0 and choose ai ≥ 0 for i = 1, 2, . . . , n. Further, for each ai,

choose ki,j ≥ 0 for j = 1, 2, . . . , ai. Let γ be the isomorphism which rearranges the factors
of the tensor product as below:

γ : (Xn ⊗Xa1 ⊗ · · · ⊗Xan)⊗Xk1,1 ⊗ · · · ⊗Xk1,a1
⊗ · · · ⊗Xkn,1 ⊗ · · · ⊗Xkn,an

−!∼

Xn ⊗ (Xa1 ⊗Xk1,1 ⊗ · · · ⊗Xk1,a1
)⊗ · · · ⊗ (Xan ⊗Xkn,1 ⊗ · · · ⊗Xkn,an )

Then we demand that the diagram below commutes.

(
Xn ⊗

n⊗

i=1
Xai

)
⊗



n⊗

i=1

ai⊗

j=1
Xki,j


 Xn ⊗

n⊗

i=1


Xai

ai⊗

j=1
Xki,j




Xa1+···+an ⊗



n⊗

i=1

ai⊗

j=1
Xki,j


 Xn ⊗Xk1,1+···+k1,a1

⊗ · · · ⊗Xkn,1+···+kn,an

Xk1,1+···+k1,a1+···+kn,1+···+kn,an

γ

µa1,...,an⊗1
1Xn⊗µ⊗···⊗µ

µ(k1,1+···+k1,a1 ),...,(kn,1+···+kn,an )
µ(k1,1+···+k1,a1 )+···+(kn,1+···+kn,an )

(OP2) Identity. Letting A be an arbitrary object of C, let λ : I⊗A −!∼ A and ρ : A⊗I −!∼ A
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as the left and right unitors in our symmetric monoidal category. Then the diagrams below
must hold for all n ≥ 0.

I ⊗Xn X1 ⊗Xn

Xn

η⊗1Xn

λ
µn

Xn ⊗ I⊗n Xn ⊗X⊗n1

Xn

1Xn⊗η⊗n

ρ⊗n
µ

(OP3) Equivariance 1. Let τ ∈ Sn, and let τ ∗ be the isomorphism τ ∗ : Xa1 ⊗ · · · ⊗Xan −!
∼

Xτ(a1) ⊗ · · · ⊗Xτ(an) and by abuse of notation denote τ as the morphism τ : Xn Xn

which is given by the group action. Then the diagram below must commute.

Xn ⊗Xa1 ⊗ · · · ⊗Xan Xn ⊗Xa1 ⊗ · · · ⊗Xan

Xn ⊗Xτ(a1) ⊗ · · · ⊗Xτ(an) Xa1+···+an

Xτ(a1)+···+τ(an)

τ⊗1Xa1
⊗···⊗1Xan

1Xn⊗τ∗ µa1,...,an

µτ(a1),...,τ(an) τ ′

Here, τ ′ is the block permutation described below:

(
1st block︷ ︸︸ ︷

1, 2, . . . , a1, . . . ,

i-th block︷ ︸︸ ︷
a1 + · · ·+ ai + 1, . . . a1 + · · ·+ ai+1, . . .

n-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, . . . , a1 + · · ·+ an)

7!

(. . . ,
τ(1)-th block︷ ︸︸ ︷
1, 2, . . . , a1, . . . ,

τ(i)-th block︷ ︸︸ ︷
a1 + · · ·+ ai + 1, . . . , a1 + · · ·+ ai+1, . . . ,

τ(n)-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, . . . , a1 + · · ·+ an, . . . ).

(OP4) Equivariance 2. Let σi ∈ Sai for i = 1, 2, . . . , n. By abuse of notation, denote σi :
Xai Xai to be the map given by the group action. Then we have that

Xn ⊗Xa1 ⊗ · · · ⊗Xan Xn ⊗Xa1 ⊗ · · · ⊗Xan

Xa1+···+an Xa1+···+an

1Xn⊗σ1⊗···⊗σn

µa1,...,an µa1,...,an

(σ1,σ2,...,σn)
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where (σ1, σ2, . . . , σn) is the permutation in Sa1+···+an defined as below.

(
1st block︷ ︸︸ ︷

1, 2, . . . , a1, . . . ,

n-th block︷ ︸︸ ︷
a1 + · · ·+ an−1 + 1, , . . . , a1 + · · ·+ an−1an)

7!

(σ1(1), σ1(2), . . . , σ1(a1)
︸ ︷︷ ︸

1st block

, . . . , a1 + · · ·+ an−1+σn(1), . . . , a1 + · · ·+ an−1+σn(an)
︸ ︷︷ ︸

n-th block

)

Example 9.2.2. As before, we can create an endomorphism operad. That is, if we let C
be a symmetric monoidal category, then we can let EndA(n) = HomC(A⊗n, A). Then u :
I HomC(X,X) is defined to be the unique map to the identity. Given f ∈ EndA(n) and
gi ∈ EndA(ai) where ai ∈ N for i = 1, 2, . . . , n, then we define our composition pointwise:

f ◦a1,...,an (g1, . . . , gn) = f ◦ (g1 ⊗ · · · ⊗ gn).

Finally, given σ ∈ Sn, we can define a group action by assigning f · σ to the morphism which
rearranges the positioning of A⊗n according to the permutation σ. With these hypotheses one
can check that the axioms of an operad are satisfied as we did in the previous section when
C = Set.
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9.3 Partial Composition: Restructuring Operads

After one stares at the definition of an operad for quite some time, they will realize that the vast
and mysterious diagrams and indices are really just for booking keeping, and that the idea is
actually rather quite intuitive. And of this bookkeeping is what makes operads a bit annoying;
we are constantly having to think about an arbitrarily long tensor products. However, Freese
has pointed out in his text that we can actually rephrase the language of operads more simply
by replacing the arbitrarily long composition morphism with a partial composition morphism.
However, this itself is not trivial.

LetX be a set, and consider the endomorphism operad EndX(n). For any f ∈ HomSet(Xn, X),
we can choose gi ∈ HomSet(Xai , X) for ai ∈ N with i = 1, 2, . . . , n. Composition can then be
defined pointwise:

f ◦a1,...,an (g1, . . . , gn)(x1, . . . , xa1 , . . . , xa1+···+an−1+1, . . . , xa1+···+an)
= f(g1(x1, . . . xa1), . . . , gn(xa1+···+an+1, . . . , xa1+···+an))

However, what if we decided to build this function another way; perhaps, handling one gi at a
time? The way we could do this is by inserting a gi one at a time:

(f, gi) 7! f(x1, . . . , xk−1︸ ︷︷ ︸
k−1

,

k-th spot︷ ︸︸ ︷
gi(x′1, . . . , x′ai), xk+1, . . . , xn︸ ︷︷ ︸

n−(k+1)

)

Given that we’d have a total of (n + ai − 1)-many inputs, this then defines a composition
operator

◦k : Xn ×Xai Xn+ai−1

for each n, ai ≥ 0. We can then repeatedly apply this composition operator to build the same
function that our operadic composition does.
Definition 9.3.1. Let X be an operad in a symmetric monoidal category C. Then for each
n,m ≥ 0, we define the partial composition operator ◦k : Xn ⊗ Xm Xn+m−1 as the
composition of the arrows pictured below.

Xm ⊗Xn Xm ⊗ (I ⊗ · · · ⊗
k-th factor

Xn⊗ · · · ⊗ I)

Xn+m−1 Xm ⊗X1 ⊗ · · · ⊗Xn ⊗ · · · ⊗X1

∼

◦k 1Xm⊗η⊗···⊗1Xn⊗···⊗η

µ1,...,1,n,1...,1

In other words, the partial composition operator ◦k on Xm ⊗ Xn is the same as our original
composition operator µ applied to Xm ⊗X1 ⊗ · · · ⊗Xn ⊗ · · · ⊗X1.

It was Fresse who demonstrated in his gigantic text that the partial composition operator
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can equivalently construct operads. The strategy he used is as follows: we first investigate what
properties (i.e. diagrams) that the partial composition operator satisfies. Then, we forget that
we ever had on operad, but we rather consider a sequence of objects which are basically operads,
but whose composition operator has now been replaced by the partial composition operator.
Fresse showed that these objects then form a category, and that this category is isomorphic to
the category of operads, thereby demonstrating an equivalence of operad definitions and paving
the way for simpler calculations in demonstrating that something is an operad.

Thus we demonstrate properties of the partial composition operator. Let X be an operad
and recall the associativity pentagon given in OP1. In the associativity diagram, replace
Xai = X1 except Xap = Xr for some p ≤ n, and set Xki,j = X1 except for Xkp,q = Xs for some
q ≤ ap. Then we get the commutative diagram below.

Xn ⊗ (X1 ⊗ · · · ⊗
k-th spot

Xr ⊗ · · · ⊗X1︸ ︷︷ ︸
n factors

)⊗ (X1 ⊗ · · · ⊗
`-th spot

Xs ⊗ · · · ⊗X1︸ ︷︷ ︸
r factor

) Xn ⊗ (X1 ⊗ · · · ⊗
k-th spot

(Xr ⊗ (X1 ⊗ · · · ⊗Xs ⊗ · · · ⊗X1))⊗ · · · ⊗X1︸ ︷︷ ︸
n factors

)

Xn+r−1 ⊗ (X1 ⊗ · · · ⊗Xs ⊗ · · · ⊗X1) Xn ⊗ (X1 ⊗ · · · ⊗Xr+s−1 ⊗ · · · ⊗X1)

Xn+r+s−2

µ1,...,r,...,1⊗(1X1⊗···⊗1Xr⊗···⊗1X1 )

∼

1Xn⊗1X1⊗···⊗◦`⊗···⊗1X1

µ1,1,...,s,...,1 µ1,1,...,r+s−1,...,1

With similar substitutions, we also get that the diagram below commutes.

Xn ⊗ (X1 ⊗ · · · ⊗
k-th spot

Xr ⊗ · · · ⊗X1︸ ︷︷ ︸
n factors

⊗X1 ⊗ · · · ⊗
`-th spot

Xs ⊗ · · · ⊗X1︸ ︷︷ ︸
(n+r−1) factors

) Xn ⊗ (X1 ⊗ · · · ⊗
k-th spot

Xs ⊗ · · · ⊗X1︸ ︷︷ ︸
n factors

⊗X1 ⊗ · · · ⊗
`-th spot

Xr ⊗ · · · ⊗X1︸ ︷︷ ︸
(n+r−1) factors

)

Xn+r−1 ⊗ (I ⊗ · · · ⊗Xr ⊗ · · · ⊗ I) Xn+s−1 ⊗ (I ⊗ · · · ⊗Xr ⊗ · · · ⊗ I)

Xm+n+r−2

µ1,1,...,r,...,1

∼

µ1,1,...,s,...,1

µ1,1,...,s,...,1 µ1,1,...,r,...,1
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9.4 The Braid Groups Form a (nonsymmetric) Operad

Recall that the n-th braid group Bn is the collection of all possible braidings of n-strands,
forming a group under composition. Each braid group has the presentation

Bn =
〈
σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσ

(1)
i+1, σiσj = σjσ

(2)
i

〉

where (1) holds only when 1 ≤ i ≤ n− 2 and (2) hold only when |i− j| > 1. Below is the braid
σ1σ3σ2σ2σ3, where we envision application of the generators starting from the left and going to
the right.

Each braid group has a natural projection mapping π : Bn Sn, where each braid is sent
to the underlying permutation. The kernel of this map is the pure braid group, which doesn’t
change the permutation. However, recall that Sn is a symmetric operad, whose composition is
given by a block permutation. That is, given a permutation Sn, and n-many other permutations
σ1 ∈ Sa1 , . . . , σn ∈ San , we can form a permutation in Sa1+···+an .

(1, 2, . . . , a1, 1′, 2′, . . . , a′2, . . . , 1′, 2′, . . . , a′n)

(σ1(1), σ1(2)), . . . σ1(a1)
︸ ︷︷ ︸

1st block

, σ′1(1), σ′1(2)), . . . σ′1(a1)
︸ ︷︷ ︸

2nd block

, . . . , σ′n(1), σ′n(2) . . . , σ′n(an)
︸ ︷︷ ︸

an-th block

)

(. . . , σ1(1), σ1(2)), . . . σ1(a1)
︸ ︷︷ ︸

τ(1)-th block

, . . . , σ′1(1), σ′1(2)), . . . σ′1(a1)
︸ ︷︷ ︸

τ(2)-th block

, . . . , σ′n(1), σ′n(2), . . . , σ′n(an)
︸ ︷︷ ︸

τ(an)-th block

, . . . , )

σ1 σ2 . . . σn

τ

This then suggests the idea that there exists an operadic composition for braids; and such an
observation checks out. Given a braid β ∈ Bn, and n-many other braids α1 ∈ Bai , . . . , αn ∈ Ban ,
we can form a braid in Ba1+···+an . The operadic composition is analogous to what we had before
with permutations; we’re going to stick braids inside of braids.
Definition 9.4.1. (Topological.) Let β ∈ Bn be a braid. We say that the i, (i+1), . . . (i+k)-
th strands form a cable if there exist a cylinder (depends on ambient space; need to decide one
for consistency) which is disjoint from all other strands of β.
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Proposition 9.4.2. Every cable is obtained from a map ◦k : Bn ×Bm Bm+n−1.

In general, we can define an "operadic" composition where the composition is the cabling of
n-braids.

◦a1,...,an : Bn ×Ba1 × · · · ×Ban Ba1+···+an

We’ll want to show that this does form an operad. But before we do that we’ll need to obtain
an algebraic expression, based on the generators of the braids being cabled, which describe the
resultant braid.

Towards that goal, consider the generator σ1, which simply swaps the first strand over the
second. Suppose we would like to substitute 4 parallel strands in the first strand of σ1, and just
one strand in the second strand of σ1. How do we calculate this braid?

7!

Above is the output of σ1(4, 1), i.e. when k1 = 4 and k2 = 1.

The blue line travels diagonally down, going underneath each red strand once. The blue
line crossing underneath the i-th red strand can be represented as σi. We then multiply all of
these together to get the braid.

7!

Hence we see that the braid is simply σ4σ3σ2σ1.
Suppose now that we would like to substitute 2 parallel strands into the first strand of σ1,

and also substitute 3 parallel strands in the second strand of σ2. Then this produces a braid of
5 strands.
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7!

Above is the output of σ1(2, 3), i.e. when k1 = 2 and k3 = 3.

How do we calculate this braid? Observe that the i-th red strand crossing over the j-th
strand can be represented as σi+j−1. In the previous situation, j was equal to 1, so it each
crossing was just σi.

7!

Overall, we can simply see that the braid is given by

(σ2σ1)(σ3σ2)(σ4σ3).

Now suppose more generally that we have k1-many red lines and k2-many blue lines. Then
we can iteratively describe their crossings one line at time, just like we did above. The crossings
will look somewhat like this:
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To describe this braid, we note that there will be k1 · k2-many crossings, and hence k1 · k2-
many generators required to describe the crossings. If we follow the first blue line, and track
each time it crosses with the red lines, we see that their crossings will be σk1 , σk1−1, . . . , σ1.
Moving onto the second blue and again traveling down, the crossings will be σk1+1, σk1 , . . . , σ2.
If we have k2-many blue lines, this will be done k2 many times.

... ...

Hence we have that

σ1(k1, k2) =
k2∏

m=1
σ(k1+m−1)σ(k1+m−2) · · ·σm (9.2)

where starting from m = 1, 2, . . . , k2 represents us following the m-th blue line and recording
its crossings with the red lines.

We get a similar story if we instead consider σ−1
1 (k1, k2). Here, we are swapping k1 many

strands under k2 many strands, so, we have to swap k1 and k2. This then gives us the expression

σ−1
1 (k1, k2) =

k1∏

m=1
σ−1

(k1−m)+1σ
−1
(k1−m)+2 · · ·σ−1

(k1−m)+k2

Now it is easily to generalize this to the other generators; we simply shift the indices.

σi(k1, k2) =
k2∏

m=1
σ(k1+m−1+(i−1))σ(k1+m−2)+(i−1) · · ·σm+(i−1)

=
(i−1)+k2∏

m′=i
σ(k1+m′−1)σ(k1+m′−2) · · ·σm′



370 Chapter 9. Operads

where we set m′ = m + (i− 1) to reindex. Note that this returns the original formula we had
once we set i = 1.

Thus we have that:
Lemma 9.4.3. Let σi be a generator. Then the braid obtained by cabling k1-many parallel
lines into the i-th strand and k2-many parallel lines into the (i + 1)-th strand returns a braid
in Bk1+k2 which may be expressed as

σi(k1, k2) =
(i−1)+k2∏

m′=i
σ(k1+m′−1)σ(k1+m′−2) · · ·σm′

Now we move onto the more difficult question: suppose we have a general braiding β of
n strands, and suppose we have k1, . . . , kn sets of parallel strands. Suppose that we’d like to
substitute k1-parallel strands in the first strand of β, k2-parallel strands in the second, all the
way to kn strands in the n-th strand. This then defines a braid of (k1 + · · ·+ kn)-many strands
which we denote as

β(k1, k2, . . . , kn).

For example, if β = σ1σ3σ2σ2, then we have β below on the bottom left. On the bottom right,
we have β(k1, k2, k3, k4) where k1 = 3, k2 = 2, k3 = 1, k4 = 3.

7!

Above is the output of β(3, 2, 1, 3).

Staring at the diagram, we can see that it may be expressed as

(σ3σ2σ1 · σ4σ3σ2)(σ6σ7σ8)(σ5σ4σ3 · σ6σ5σ4 · σ7σ6σ5)
(σ5σ4σ3 · σ6σ5σ4 · σ7σ6σ5)(σ8σ7σ6).

But how can we do this in general? To explain, first suppose

β = σi1σi2 · · ·σik .
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To draw the cabled braid β(k1, k2, . . . , kn), we see that we have k-crossings to focus on; these
are where the crossings will happen in our cabled braid. For example, in the braid we provided
above, we can highlight the crossings in yellow.

At each crossing, we’re going to have something like this:

... ...

σ??

That is, at each crossing, there will be a number of red strands crossing over blue strands.
If we can just describe each of these crossings using generators σj like we did before, then we
can describe the whole braid.

We now face the main problem. To describe an arbitrary crossing, we need to know which
generators σ1, σ2, . . . , σk1+···+kn to use, and in general it’s not clear which ones to use. For
example, how do we describe the first crossing? We don’t know, so we’ll write σ??. If, however,
we know that the first red strand is, say the k-th strand in β(k1, . . . , kn), then we can write the
crossing as σk. Then we can travel down the blue line, writing σk−1, σk−2, . . . until we’ve hit all
the red strands. Then we can repeat this process for each blue line.

So to do this in general, we need to answer three questions:
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• How far are all of our red strands from the left?

• How many red strands are there?

• How many blue strands are there?

If we can answer those three questions, then we can describe exactly what happens in terms of
generators using formula (9.2).

We answer the first question:
Definition 9.4.4. Let β ∈ Bn be a braid. Suppose β can be written as a product of k-many
generators β = σi1σi2 · · ·σik (where any σ is equally possibly an inverse). Then we define the
quantity

ϕ(σi1σi2 . . . , σij , s) =





The order which strand s
is from the left after generators
σi1σi2 . . . , σij have been applied.

Of course, ϕ(−, s) = s, where − represent empty input, for each strand s. This is because each
s-th strand is originally the s-th strand.

However, a way to define this is to calculate the underlying permutation of σ1
i σ

2
j . . . , σ

p
k using

the natural projection map π : Bn Sn. Hence we see that

ϕ(σi1σi2 . . . , σik , s) = π(σi1σi2 . . . , σik)(s).

Example 9.4.5. Consider the braid σ1σ3σ2σ2σ3 pictured below. Suppose we’ve applied σ1σ3.
Then our braids are now reordered from how they were initially positioned. For instance, after
the application of these generators, the green strand is now the first strand; the red strand is
now the second; the blue strand is the third; and the black strand is now the fourth. Each color
strand is now in a different position than which it started in.

However, we can express this observation using our tool. Note that π(σ1σ3) is the permutation
(1, 2, 3, 4) 7! (2, 1, 4, 3). Hence we see that

ϕ(σ1σ3, 1) = 2 ϕ(σ1σ3, 2) = 1 ϕ(σ1σ3, 3) = 4 ϕ(σ1σ3, 4) = 3.
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What about after the first three generators have been applied? We calculate again: π(σ1σ3σ2)
is the permutation (1, 2, 3, 4) 7! (2, 4, 1, 3). Hence we have that

ϕ(σ1σ3σ2, 1) = 2 ϕ(σ1σ3σ2, 2) = 4 ϕ(σ1σ3σ2, 3) = 1 ϕ(σ1σ3σ2, 4) = 3.

which matches a simple hand-count that we can perform using the picture below.

This tool allows us to answer our second and third questions. For example, consider again
β(3, 2, 1, 3) where β = σ1σ3σ2σ2σ3. How do we calculate, for example, the crossing 5 , of 3
blue lines over 1 black line, as in the picture below?

7!

Above is the output of β(3, 2, 1, 3).

This crossing is induced by σ3, the fifth generator of β. Hence β tells us to cross the 3nd cable
over the 4rd cable. But what are these cables? From looking at the diagram, we definitely
know. But in general we won’t be able to just look at the diagram. However, our tool can tell
us: Since we’ve applied σ1σ3σ2σ2, we see that

ϕ(σ1σ3σ2σ2, 3) = 4 ϕ(σ1σ3σ2σ2, 4) = 1.
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Therefore, we’re crossing blue cables over the black cables. We also now know there are k4 = 3
blue cables and k3 = 1 many black cables. We have almost everything we need except the
following: how far are the blue cables from the left of the diagram?

Well, since the blue strands are inside of the third cable, we just need to ask how many
stands are in the first and second cables. But what is the first cable? What’s the second? We
see that

ϕ(σ1σ3σ2σ2, 1) = 2. ϕ(σ1σ3σ2σ2, 2) = 1.

Hence there are
k2 + k1 = 2 + 3 = 5

strands before the blue strands. We can now calculate the crossings:

σ5+3σ5+2σ5+1 =
1+5∏

m=1+5
σ3+(m−1)σ3+(m−2)σm

=
p+(r−1)∏

m=p
σq+(m−1)σq+(m−2)σm

where

p = 1 +
# of strands before the red strands︷ ︸︸ ︷

k2 + k3 q = k4︸︷︷︸
# of strands in the 3rd cable

r =
# of strands in the 4th cable︷︸︸︷

k3

Therefore we propose the following.
Lemma 9.4.6. Let β ∈ Bn be a braid, and suppose it may be expressed as σi1σi2 · · ·σik in
terms of k-many generators. Let k1, . . . , kn be positive integers. Then we have that

β(k1, k2, . . . , kn) = ψ1ψ2 . . . ψk

where, depending on if σij is an instance of an inverse or not, we have

pj+(rj−1)∏

m=pj
σqj+(m−1)σqj+(m−2) · · ·σm or

pj+(rj−1)∏

m=pj
σ−1

(qj+m)−1σ
−1
(qj−m)−2 · · · σ−1

m

where in both cases

pj =

# strands before ij-th cable︷ ︸︸ ︷

1 +
ij−1∑

u=1
kϕ(σi1 ···σij−1 ,u) qj = kϕ(σi1 ···σij−1 ,ij)︸ ︷︷ ︸

# of strands in the ij-th cable

# of stands in the (ij+1)-th cable︷ ︸︸ ︷
rj = kϕ(σi1 ···σi(j−1) ,(ij+1))
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The three quantities are the three answers to our original questions:

• After applying σi1 . . . σij−1 , how many strands come before the cable ij, relative to the
left? pj.

• How many strands are in the ij-th cable after applying σi1 . . . σij−1? qj.

• How many strands are in the (ij + 1)-th after applying σi1 . . . σij−1? rj.

Example 9.4.7. We can apply this to our previous example. Recall that β = σ1σ3σ2σ2σ3.
One way to interpret out braid diagram is as a sequence of permutations. In this case we see
that we get five permutations because we have five generators.

7!

1 2 3 4

2 1 3 4

2 1 4 3

2 4 1 3

2 1 4 3

2 1 3 4

First we compute the table

j ij pj qj rj

1 1 1 k1 = 3 k2 = 2
2 3 1 + k1 + k2 = 6 k3 = 1 k4 = 3
3 2 1 + k2 = 3 k1 = 3 k4 = 3
4 2 1 + k2 = 3 k4 = 3 k1 = 3
5 3 1 + k1 + k2 = 6 k4 = 3 k3 = 1
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This then gives us the product


p1+(r1−1)∏

m=p1

σq1+(m−1)σq1+(m−2) · · ·σm




p2+(r2−1)∏

m=p2

σq2+(m−1)σq2+(m−2) · · · σm





p3+(r3−1)∏

m=p3

σq3+(m−1)σq3+(m−2) · · ·σm





p4+(r4−1)∏

m=p4

σq4+(m−1)σq4+(m−2) · · ·σm




p5+(r5−1)∏

m=p5

σq5+(m−1)σq5+(m−2) · · · σm



which becomes



1+(2−1)∏

m=1
σ3+(m−1)σ3+(m−2) · · ·σm






6+(3−1)∏

m=6
σ1+(m−1)σ1+(m−2) · · ·σm







3+(3−1)∏

m=3
σ3+(m−1)σ3+(m−2) · · ·σm







3+(3−1)∏

m=3
σ3+(m−1)σ3+(m−2) · · ·σm






6+(1−1)∏

m=6
σ3+(m−1)σ3+(m−2) · · ·σm




which reduces to

(σ3σ2σ1 · σ4σ3σ2)(σ6σ7σ8)(σ5σ4σ3 · σ6σ5σ4 · σ7σ6σ5)
(σ5σ4σ3 · σ6σ5σ4 · σ7σ6σ5)(σ8σ7σ6)

which correctly matches what we had before.

Example 9.4.8. We haven’t looked at a braid with an under crossing. So, consider the braid
β = σ−1

1 σ−1
2 σ3σ2σ1 ∈ B4, and let k1 = 2, k2 = 3, k3 = 4, k4 = 5. We’ll want to calculate the

braid β(2, 3, 4, 5). Below is β and β(2, 3, 4, 5).
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7!

To calculate the resulting braid we need to create our table of values. This is more easily done
by generating the permutation table on the left; it tells us how our cables are swapped around.

Generator Permutation
∅ (1, 2, 3, 4)
σ−1

1 (2, 1, 3, 4)
σ−1

1 σ−1
2 (2, 3, 1, 4)

σ−1
1 σ−1

2 σ3 (2, 3, 4, 1)
σ−1

1 σ−1
2 σ3σ2 (2, 4, 3, 1)

σ−1
1 σ−1

2 σ3σ2σ1 (4, 2, 3, 1)

j ij pj qj rj

1 1 1 k1 = 2 k2 = 3
2 2 1 + k2 = 4 k1 = 2 k3 = 4
3 3 1 + k2 + k3 = 8 k1 = 2 k4 = 5
4 2 1 + k2 = 4 k3 = 4 k4 = 5
5 1 1 k2 = 3 k4 = 5

This then generates the products
( 3∏

m=1
σ−1
m+2σ

−1
m

)( 7∏

m=4
σ−1

(m+2)−1σ
−1
m

)( 12∏

m=8
σ(m+2)−1σm

)( 8∏

m=4
σ(m+4)−1σ(m+4)−2σ(m+4)−3σm

)

( 5∏

m=1
σ(m+3)−1σ(m+3)−2σm

)

which becomes

(σ−1
2 σ−1

1 · σ−1
3 σ−1

2 · σ−1
4 σ−1

3 )(σ−1
5 σ−1

4 · σ−1
6 σ−1

5 · σ−1
7 σ−1

6 · σ−1
8 σ−1

7 )
(σ9σ8 · σ10σ9 · σ11σ10 · σ12σ11 · σ13σ12)(σ7σ6σ5σ4 · σ8σ7σ6σ5 · σ9σ8σ7σ6 · σ10σ9σ8σ7 · σ11σ10σ9σ8)

(σ3σ2σ1 · σ4σ3σ2 · σ5σ4σ3 · σ6σ5σ4 · σ7σ6σ5)

which is the correct description of the braid β(2, 3, 4, 5).

Now we can finally answer our desired question:

Given a braid β ∈ Bn, and n other braids α1 ∈ Ba1 , . . . , αn ∈ Ban , what is the formula for
β(α1, . . . , αn)?
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To answer this question, we build on our previous work by making the following observation.
Suppose we want to compute σ1(α1, α2) where σ1, α1, α2 appear as below.

Here we have σ1, α1 = σ2σ1σ2 and α2 = σ2σ1.

Then we get the braid diagram as in 1 .

However, we can all isotopies to stretch the braid to 2 , then 3 , and then reaching a final
stage of 4 . But note that 4 may be expressed in either of the equivalent ways:
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This then gives us the following idea. Suppose we want to calculate β(α1, . . . , αn) where
αi ∈ Bai . Define α1 ⊕ · · · ⊕ αn as the (a1 + · · · + an)-braid. Suppose that αj = σj,ij , . . . , σj,ikj .
Then

α1 ⊕ α2 ⊕ · · ·⊕ = (σ1,i1σ1,i2 , . . . , σ1,ik1
)(σ2,(i1+a1)σ2,(i2+a2), . . . , σ2,(ik1+a1))

· · · (σn,(i1+a1+···+an−1)σ2,(i2+a2), . . . , σn,(ik1+a1+···+an−1))

which concatenates the braid horizontally. Then we see that

β(α1, . . . , αn) = β(a1, a2, . . . , an) ◦ α1 ⊕ α2 ⊕ · · · ⊕ αn.
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(σM ,P )n :
⊕

i+j=n

Mi ⊗ Pj →
⊕

i+j=n

Pj ⊗Mi

(m⊗ p) 7−→ kijp⊗m

⊗ =

w
(n)
A

v′A

vA wA

v′′A

A×B A⊗B

G

ϕ

f
hA⊗B

A⊗ (I ⊗B)

(A⊗ I)⊗ (I ⊗ (I ⊗B))

1A⊗λb

ρA⊗λI⊗B

I ⊗A A A⊗ I

I ⊗B B B ⊗ I

λA

1I⊗f f

ρA

f⊗1I

λB
ρB

A⊗ (B ⊗C) (A⊗B)⊗C

A′ ⊗ (B′ ⊗C ′) (A′ ⊗B′)⊗C ′

αA,B,C

f⊗(g⊗h) (f⊗g)⊗h

αA′,B′,C′10. Sheaves

10.1 Topological Presheaves and Sheaves

Let X be a topological space. Denote the set of open subsets of X as Open(X). We can
impose the structure of a thin category on this set by declaring that, for two open sets U and
V ,

HomOpen(X)(U, V ) =



{•} if U ⊆ V

∅ otherwise

That is, we allow a single morphism from U to V if and only if U ⊆ V . Now suppose Y is
another topological space. Then for each open subset U of X we may construct the set

C(U) = {f : U Y | f is continuous }.

Observe that if U ⊆ V ⊆ X are open sets, then there is function

ρVU : C(V ) C(U)

where each f : V Y is mapped to its restriction f |U : U Y . What follows is an important
observation: If we have a chain of three open subsets U ⊆ V ⊆ W , then any continuous function
f : W Y can be restricted to f |V : V Y , which can then be restricted to f |V |U : U Y .
However, we obtain the same result if we instead just restrict f to U in the first place. That
is, f |V |U = f |U . In our notation, this implies that

ρWV ◦ ρVU = ρWU .

What we have on our hands is a contravariant functor (since the relation U ⊆ V induces a
function C(V ) C(U)). As covariant functors are easier to think about, we can equivalently
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express this as a covariant functor:

C : Open(X)op Set

which is an example of the concept of a presheaf.
Definition 10.1.1. A presheaf (of sets on a topological space X) is a covariant functor
F : Open(X)op Set. We spell out the details: A presheaf consists of
(PS1) an assignment of open sets U ⊆ X to sets F (U)

(PS2) a function ρVU : F (V ) F (U) whenever U ⊆ V such that

(Identity) ρUU : F (U) F (U) is the identity

(Composition) ρWV ◦ ρVU = ρWU whenever U ⊆ V ⊆ W

A morphism of presheaves is a natural transformation between presheaves.

A few comments are to be made about this definition.

• About Set. The codomain of a presheaf doesn’t have to be Set. Usually, the value of
our presheaves are sets of functions, but sometimes such sets have additional structure.
Therefore, the codomain could be Ab, Ring, or another category where the objects are
sets plus some mathematical structure. In these cases, we’d obtain a presheaf of abelian
groups, a presheaf of rings, and so forth.

• About the naming. The only reason this is called a presheaf is because, as the reader may
guess, this idea is a precursor to the concept of a sheaf.

• The fact that we can formulate morphisms between presheaves prompts us to define the
category of presheaves (of sets) on C which we denote as Psh(X,Set).

We now offer some examples of presheaves. The examples we offer will be topological
presheaves, i.e., presheaves on Open(X) for some topological space X. This is because many
interesting and useful examples of presheaves appear in this way. This is also done so that we
can offer our first definition of sheaf with as littel confusion as possible.

Example 10.1.2. Consider the introductory example of this section, and instead take Y = R.
Then in this case,

C(U) = {f : U R | f is continuous}.
However, observe that C(U) is actually an R-module: if f, g : U R are continuous, then so
is f + g : U R. Moreover, if a ∈ R, then a · f : U R is continuous. These operations
satisfy the criteria for C(U) to be an R-module. Therefore, when Y = R, we obtain a presheaf
on R-Mod, and we may write

C : Open(X)op R-Mod.

We will return to this example later on.
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Example 10.1.3. For every open set D of the complex plane C, define the set

H(D) = {f : D C | f is holomorphic. }

Observe that this induces a functor H : Open(C)op Set, and hence we have a presheaf
of sets. Moreover, this is actually a C-module, so that what we have is actually a presheaf of
C-modules; hence we write H : Open(C)op C-Mod.

Example 10.1.4. Let X be a topological space, and consider the functor B : Open(X)op

R-Mod, defined as follows. For an open subset U ⊆ X, we define

B(U) = {f : U R | f is bounded}.

By bounded, we mean that f : U R is bounded if there exists a constant M ∈ R such that,
for all x ∈ U , |f(x)| ≤ M . This example becomes important later, specifically in that it is an
example of a presheaf which is not a sheaf (yet to be defined).

Our next goal is to offer our first definition of a sheaf. To motivate the definition, we will
consider our introductory example.

Recall our presheaf C : Open(X)op Set. Consider an open set U with an open cover
U = {Ui}i∈λ. Then every f : U R in C(U) corresponds to an element of F (Ui) for all i; it
is simply the restriction f |Ui R.

A natural question is the converse: If I have such an open cover U of U , and a family of
continuous functions fi : Ui Y , is there a continuous function f : U R such that f |Ui = fi
for all i?

Immediately, the answer is no: simply take a family in which the functions disagree on their
overlaps. Thus, what if our family does agree on their overlaps? This would mean that, for
every pair i, j,

fi|Ui∩Uj = fj|Ui∩Uj .
(Of course, Ui ∩ Uj could be empty; but we don’t know in general, so we just play it safe and
consider all pairs i, j ∈ λ.) The answer now is affirmative, there is an fact a f : U R where
f |Ui = fi for all i. Thus we see that C : Open(X)op Set is a rather special type of presheaf,
and we call this kind of functor a sheaf.
Definition 10.1.5. Let X be a topological space. A topological sheaf (of sets) on X is a
presheaf F : Open(X)op Set such that, for every open set U and any open cover U = {Ui}i∈λ
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of U , the following two properties hold:
(SH1) If f , g ∈ F (U) are such that f |Ui = g|Ui for all i ∈ λ, then f = g.

(SH2) Suppose that for all i ∈ λ, we have hi ∈ F (Ui) such that hi|Ui∩Uj = hj|Ui∩Ui (i.e., a
family of hi which agree on all possible overlaps). Then there exists a h ∈ F (U) such that
h|Ui = hi for all i ∈ λ.

A few comments about this definition:

• In our definition, SH2 is our main axiom of focus. We add SH1 so that the given
h ∈ F (U) in SH2 is necessarily unique.

• Once again, the codomain of our sheaf does not have to Set. We will see this in a few
examples.

• With the notion of a morphism of sheaves, we can define the category of topological
sheaves (of Sets), denoted Sh(X,Set), to be the category with objects sheaves and
morphisms with natural transformations.

We end this definition by defining a morphism of sheaves; it is simply a natural transforma-
tion between sheaves.

We now offer a few examples of topological sheaves.

Example 10.1.6. Consider again the introductory example C : Open(X)op R-Mod. We
show that this is a sheaf. Towards that goal, let U be an open with open cover U = {Ui}i∈λ.
(SH1) Suppose f, g : U R are continuous functions which agree on the overlaps of the open

cover. Then in this case it’s clear that f = g.

(SH2) Suppose fi : Ui R is a family of continuous functions such that fi|Ui∩Uj = fj|Ui∩Uj
for all i, j ∈ λ. Construct a function ϕ : U R pointwise as follows: Given a p ∈ U ,
there exists some k ∈ λ such that p ∈ Uk. Therefore, let ϕ(p) = fk(p); agreement on
overlaps makes this well defined.
We show that ϕ is continuous. For an open set V of R, define ϕ−1(V ) = ⋃

i∈λ f
−1
i (V ). As

this is a union of open sets, ϕ−1(V ) is open and hence ϕ is continuous.
As we’ve satisfied SH1 and SH2, we see that this is a sheaf.

A reader familiar with topology will note that our work towards the axiom SH2 in the last
example is nothing more than the standard proof of the Pasting Lemma from topology.

Example 10.1.7. Consider the presheaf H : Open(C) C-Mod which sends open sets of
C to the C-module of holomorphic functions defined on them.

This is also a sheaf, which we verify. Let U be an open set of C and U = {Ui}i∈λ an open
cover.
(SH1) This is true in the same was as the last example.
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(SH2) Let fi : Ui C be a family of holomorphic functions such that each fi agree on all
possible overlaps. Define f : U C in the obvious way. To show that f is holomorphic
on U , pick any p ∈ U . Then p ∈ Uk for some k, and hence there exists an open set Dk of
p such that fk(z) = ∑∞

n=1 an(z − p)n, i.e., it has a power series representation. This then
gives us a well-defined power series representation for f , so that f is holomorphic.

We now offer an example of a presheaf which is not a sheaf.

Example 10.1.8. Consider the presheaf B : Open(X) R-Mod where B(U) is the set of
all bounded functions f : U R.

In general, this is not a sheaf; axiom SH2 is usually broken. For example, take X = R, and
consider the open set (0, 1), with the open cover given by the sets {Ui =

(
1
i
, 1
)
| i = 1, 2, . . . }.

Observe that the functions

fi(x) :
(1
i
, 1
)

R fi(x) = 1
x

agree on their overlaps, but clearly there is no bounded function f : (0, 1) R such that
f |Ui = fi for all i. Hence, this is not a sheaf.
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10.2 Abstracting Sheaves

We will now take a more categorical approach to extract the key properties of a sheaf, so that
we may generalize our logic. Towards that goal, we’ll introduce a second definition of a sheaf,
one which is equivalent to what the reader has already seen; it will offer a new perspective. To
motivate this perspective, we will again use our canonical sheaf of continuous functions:

C : Open(X)op Set C(U) = {f : U Y | f is continuous}

Consider an open set U of X, and let U = {Ui}i∈λ be an open cover of U . Let us make a
few nontrivial observations. The reader is strongly encouraged to move forward with pen and
paper in hand and to draw lots of pictures.

• A family of continuous functions hi : Ui Y can be viewed as an element (hi)i∈λ of the
product ∏i∈λC(Ui).

• Using our open cover U , we can define for each pair k, ` ∈ λ the functions

pk,`, qk,` :
∏

i∈λ
C(Ui) C(Uk ∩ U`)

where
pk,`

(
(hi)i∈λ

)
= hk

∣∣∣
Uk∩U`

and qk,`

(
(hi)i∈λ

)
= h`

∣∣∣
Uk∩U`

.

With a lot of notation, a picture may help.

Uk
U`

Uk ∩ U`

X

h`

h`|Uk∩U`

hk|Uk∩U`

hk

Y

• The fact that the functions pk,`, qk,` exist for all k, ` ∈ λ implies the existence of p and q
below which make the diagram commute. (This is just applying the universal property
of the product ∏i,j F (Ui ∩ Uj).) These two functions are rather important.
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∏

i∈λ
F (Ui)

F (Uk ∩ U`)
∏

i,j∈λ
F (Ui ∩ Uj) F (Uk ∩ U`)

pk,`qk,`
q p

πk,` πk,`

Now consider the set of all (hi)i∈λ ∈
∏
i∈λ F (Ui) such that they agree on overlaps; i.e., such

that hi
∣∣∣
Ui∩Uj

= hj
∣∣∣
Ui∩Uj

for all i, j ∈ λ. We call this set Eq(p, q):

Eq(p, q) =
{

(hi)i∈λ ∈
∏

i∈λ
F (Ui) | p

(
(hi)i∈λ

)
= q

(
(hi)i∈λ

)}
.

However, since C is a sheaf, we know that for every such (hi)i∈λ in Eq(p, q) there exists a unique
h : U Y such that h|Ui = hi. Therefore, we see that

Eq(p, q) ∼= C(U)

Okay, so that’s just a slightly more complicated way of expressing C(U). What’s interesting
about this, however, is that Eq(p, q) is quite literally the equalizer of p and q (hence the naming
we chose for the set).

F (U)
∏

i∈λ
F (Ui)

∏

i,j∈λ
F (Ui ∩ Uj).e

p

q

This is the motivation behind the following definition of a sheaf, which is exactly equivalent
to our previous one.
Definition 10.2.1. A sheaf (of sets) on a topological space X is a functor

F : Open(X)op Set

with the following property: If U is an open set and U = {Ui}i∈λ an open cover of U , then
F (U) is an equalizer of p, q, constructed using U as above. The equalizer diagram is below:

F (U)
∏

i∈λ
F (Ui)

∏

i,j∈λ
F (Ui ∩ Uj).e

p

q

We remark two comments on this definition.

• It is more important to understand the philosophy of the above definition rather than the
literal text of it (of course, that’s necessary). For example, a topological space does in fact
speak of families of sets which are closed under arbitrary union and finite intersection.
But that’s a literal definition, and not the philosophy of a topological space.
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• There are many ways to state the definition of a sheaf. The one offered above is very
powerful because it allows us to quickly capture many useful situations and it is useful
for proofs.

Now before we move on, we are going to briefly introduce a new concept.
Definition 10.2.2. Let C be a category and C an object of C. A sieve on C is a set S which
is a subset of all morphisms with codomain C:

S ⊆ {f | f : B C and f is a morphism of C}

with following property.
(SV1) If f is in S, then f ◦ h is in S for any composable h.

We will demonstrate an example of this concept, specifically to capture why we care about
it.

Example 10.2.3. Let X be a topological space, and consider the category Open(X). Let U
be an open set of X. To speak of a sieve on U , we must first realize that the set of all objects
with codomain U is simply the set

ΩU = {V ⊆ U | V is open}

This set may actually be treated as the object set of the full subcategoryOpen(U) ofOpen(X).
So, what is a sieve in this case? It is any S ⊆ ΩU such that

(SV1) If V ∈ S, V ′ is open, and V ′ ⊆ V , them V ′ ∈ S.
Take note that this is a bit of subtle concept; it’s a very versatile definition. For example,
considering R2 with its standard topology, the following (blue) open sets create sieves on the
same open set (the open disk at the origin).

x

y

U

V1

V2

x

y

U

V

On the left, we consider the set of all open sets contained in V1 and V2; this is a sieve on the
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open disk (which we call U to be consistent with our notation and discussion). On the right,
we consider the set of all open sets contained in the weirdly shaped V ; this is also a sieve on
U .

Some important facts about sieves on topological spaces that will be of interest to us.

• Every open set V ⊆ U corresponds to a sieve, which we call a principal sieve. This
sieve is simply the set of all open V ′ contained in V . In the previous example, the weirdly
shaped region inside the open disk at the origin is a principal sieve.

• Every open cover of U = {Ui}i∈λ creates a covering sieve SU . This sieve is the set of all
open V such that V ⊆ Ui for some i, and where V ′ ⊆ V implies V ′ is also in the set.

Additionally, a covering sieve induces a (fairly stupid) functor S, where:

S : Open(X)op Set S(V ) =



{•} If V ∈ SU
∅ otherwise.

We are now prepared to continue our discussion. Our goal now will be to express the
equalizer E of p, q categorically (i.e., without reference to its elements). Let P : O(X)op Set
be a presheaf. Given an open set U with open cover U = {Ui}i∈λ, we may construct p, q using
U as before, and take their equalizer E:

E
∏

i∈λ
P (Ui)

∏

i,j∈λ
P (Ui ∩ Uj).e

p

q

We now prove the following result.
Lemma 10.2.4. Let E be the equalizer of p, q constructed using an open cover U of U . Let S
be the sieve functor induced by U . Then

E ∼= Hom(S, P ) or, in alternate notation, E ∼= Nat(S, P )

That is, there is a bijection between E and all natural transformations between S and P .

Proof. We know that

E =


(hi)i∈λ

∣∣∣∣ hi|Ui∩Uj = hj|Ui∩Uj for all i, j


.

We’ll show that every (hi)i∈λ can be used to build a natural transformation between S P .
Showing the other direction is not hard.

Let SU be our covering sieve induced by U . Consider an element (hi)i∈λ in E. For each
V ∈ SU , we define hV ∈ P (V ) as

hV = hi|V
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where i is the index such that V ⊆ Ui. Of course at least one index exists, but it might not be
the only index. Thus, a natural objection to this definition is the following question: What
if V is contained in Ui and Uj for distinct i, j? In this case, how do we define hV ?

V

Ui Uj

If (hi)i∈λ ∈ E, then we know that agreement on the overlaps is guaranteed and so we may
unambiguously write hi|V = hj|V = hV . Hence, each V ∈ SU corresponds to some unique
hV ∈ P (V ) for every (hi)i∈λ ∈ E. Furthermore, we know that if V ′ ⊆ V , then hV |V ′ = hV ′ .

These facts allow us to create the following natural transformation θ : S P using an
element (hi)i∈λ of E, as follows.

• If V ∈ SU , we write θV : {•} P (V ) where θV (•) = hV , the unique hV we already
know exists.

This allows us to create the function

ϕ : E Hom(S, P ) ϕ
(

(hi)i∈λ
)
7! (θ : S P )

It is not difficult to show that every natural transformation between S and P corresponds
to a unique element in E, thereby giving us an inverse to this function. Thus we have our
result. �

The above result is key to the the following proposition, which is what allows us to speak
of a sheaf more abstractly. Before we introduce the proposition, we make a few comments.

• Let

Proposition 10.2.5. Let P : Open(X)op Set be a presheaf. Then P is a presheaf if and
only if for every open set U and covering sieve S of U ,
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10.3 Stalks and Germs

Let (I,≤) be a partially ordered set, and suppose we have a functor F : I Set. With this
functor, denote F (i) = Ai and when i ≤ j, F (i ≤ j) = fij : Ai Aj. The limit of this
functor Lim

i∈I

F will be a set A equipped with functions ϕi : Ai A with the universal property

displayed below.

Ai Aj

A

K

fij

ϕi

ψi

ϕj

ψj

We may naively suppose that A =
∐

i∈I
Ai = {(a, i) | a ∈ Ai, i ∈ I}, since such a set admits a

family of functions inci : Ai
∐

i∈I
Ai. However, we cannot guarantee that this the triangle

Ai Aj

∐

i∈I
Ai

fij

inci incj

will commute. In fact, it will never commute, since it would imply that for each a ∈ Ai,
(a, i) = (fij(a), j), which cannot happen as the tuples are mismatched. Since it is too strong
to demand equality, we can define an equivalence relation ∼ on

∐

i∈I
Ai as follows: For i ≤ j, we

say (a, i) ∼ (b, j) if b = fij(a). We can then set

A =
∐

i∈I
Ai

/
∼

and define a family of maps ϕi : Ai A which maps each a ∈ Ai to its equivalence class
under this relation. This then allows the desired triangle to commute and satisfies the universal
property necessary for it to be the limit.

We now apply this construction to our story with sheaves.
Definition 10.3.1. Let X be a topological space and F : O(X) Set a sheaf. For any point
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x ∈ X, we define the stalk of F in x, denoted Fx, as the colimit

Lim
x∈U

F (U).

The above notation is a bit informal, but many people use it, so we will stick with it and
explicitly describe this limit as follows. Each point x ∈ X induces a functor F (x) : O(X)x Set
where Ox is the category of open sets of X containing x, and F (x)(U) = F (U). We can then
more formally say

Lim
x∈U

F (U) = Lim
U∈O(X)x

F (x).

Therefore, we can say that
Lim
x∈U

F (U) =
∐

U |x∈U
F (U)

/
∼

where ∼ is the equivalence relation described previously. In this instance, the equivalence
relation translates as follows. Let U1 ⊆ U2 be two open sets. Then we say (f, U1) ∼ (g, U2) if
g
∣∣∣∣
U1

= f .
We can make this more refined as follows. Let U1, U2 be more generally any two open sets

such that V = U1 ∩U2 6= ∅. Then clearly V ⊆ U1 and V ⊆ U2. Now suppose, (f, V ) ∼ (g1, U1)
for some f, g1, and (f, V ) ∼ (g2, U2). Then we now have that

(g1, U1) ∼ (g2, U2) ⇐⇒ g1

∣∣∣∣
V

= g2

∣∣∣∣
V
.

Thus we have translated our original equivalence relation into a more useful one. To summarize,
we have that our stalk is the set

Lim
x∈U

F (U) =


 [(f, U)] | x ∈ U open, f ∈ F (U),





where (f, U) is a representative of its equivalence class [(f, U)], described explicitly as

[(f, U)] =
{

(g, V ) | g ∈ F (U), x ∈ V open and g
∣∣∣∣
V

= f

∣∣∣∣
V

}
.

The above line leads to our next definition.
Definition 10.3.2. Let U be an open set containing x. There naturally exists projection map

πU : F (U) Fx f 7! [(f, U)].

Therefore, for each f ∈ F (U), we define the germ of f in x to be the equivalence class [(f, U)]
in the stalk Fx.



(σM ,P )n :
⊕
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⊕
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Pj ⊗Mi
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⊗ =

w
(n)
A

v′A

vA wA

v′′A
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G

ϕ

f
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1A⊗λb

ρA⊗λI⊗B

I ⊗A A A⊗ I

I ⊗B B B ⊗ I

λA

1I⊗f f

ρA

f⊗1I

λB
ρB

A⊗ (B ⊗C) (A⊗B)⊗C

A′ ⊗ (B′ ⊗C ′) (A′ ⊗B′)⊗C ′

αA,B,C

f⊗(g⊗h) (f⊗g)⊗h

αA′,B′,C′11. Persistence Modules

11.1 Persistence modules on R.

Definition 11.1.1. Let C be a category, and denote (R,≤) to be the poset category on R with
respect to the natural relation ≤. We define a functor F : (R,≤) C to be a persistence
module.

Thus we can say that a persistence module is an element of the functor category CR.
A persistence module allows us to model the evolution of objects within some category C.

For example, if we have some ascending chain of vector spaces

· · · Vi−1 Vi Vi+1 · · ·
then we say that such a chain is a persistence module since it can be modeled as a functor from
R Vec.

Let S = {s1, s2, . . . , sn} be a finite subset of Rn. Then we can describe an adjunction

CR CS

as follows. First observe that since S ⊆ R, there exists a restriction functor R : CR CS,
which acts as a restriction (hence the naming R):

R(F : R C) = F
∣∣∣
S

: S C.

How can we write a functor going in the opposite direction? That is, given a persistence module
which acts on S,

· · ·· · ·

CK
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is there a canonical way to extend this to a persistence module which acts on the rest of R?

· · · · · ·

C
K

One way we may extend a persistence module K : S C in CS to a persistence module in
CR is to define a functor K : R C where

K(r) =





I if s < s1

K(r) if si ≤ r ≤ si+1

K(rn) if r > sn

=



I if r < min(S)
K(sr) where sr is the largest sr ∈ S such that sr ≤ r.

Now consider a morphism η : K P in CS; that is, a natural transformation. By our above
procedure we have a way of discussing the objects K and P ; but can we obtain a natural
transformation η : K P from η? That is, may we extend this relationship to a functor?

First, observe that we may write η : K P as follows.

P (s1) P (s2) · · · P (sn−1) P (sn)

K(s1) K(s2) · · · K(sn−1) K(sn)

ηS1 ηS2 ηSn−1 ηSn

The top and bottom rows come about by functoriality of K and P , while the upward arrows
are the family of morphisms created by the existence of a natural transformation.

We can extend this to a natural transformation η : K P by stating

ηr =




1I if r < s1, where I is initial
ηsr where sr is the largest sr ∈ S such that sr ≤ r.

Adjoint Functors
Thus we see that we really do have a functor CS CR on our hands If we denote this as a
functor E : CS CR, where E can be read as extends, then we overall have

CR CSR

E
.

We can now demonstrate that this pair of functors gives rise to an adjunction; there a few ways
to do this. We’ll demonstrate that

HomCS(K,PS) ∼= HomCR(K,P )

is natural, where PS = R(P ) and K = E(K). Towards this goal, consider a morphism η :
K PS. Then we have something like this again
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Ps(s1) Ps(s2) · · · Ps(sn−1) Ps(sn)

K(s1) K(s2) · · · K(sn−1) K(sn)

η1 η2 ηn−1 ηn

Now we seek a natural transformation η′ : K P . Since K is constructed from K, a good
choice would be to write η′si = ηsi for si ∈ S. Now our concern is considering how to define η′r
when r 6∈ S. That is, we want something like

· · · P (si) P (r) P (si+1) · · ·

· · · K(si) K(r) K(si+1) · · ·

η′si η′r η′si+1

To define the morphism in red, we first recall that in this situation we have K(r) = K(si).
Hence we know that any morphism from K(r) must originate from K(si); one such morphism
we already know about is ηsi : K(si) Ps(si). Now, Ps(si) = P (si); and in our case the
desired target for η′ is P (r), not P (si). However, we can compose this with the morphism
P (j) : P (si) P (r). where j : si r.

· · · P (si) P (r) P (si+1) · · ·

· · · K(si) K(r) K(si+1) · · ·

j

η′si η′r η′si+1

Therefore, in this case we define
η′r := P (j) ◦ ηsi .

which necessarily forces commutativity, and hence demonstrating naturality of η′. Now what
if r < s1 or sn < s? In the first case, K(r) = I, and η′r becomes the unique morphism from
I P (r). This presents one benefit of adding the criteria K(r) = I if r < s1. By uniqueness
of this morphism we get a commutative square. In the second case, we proceed as above.
Therefore

η′r =



iP (r) : I P (r) if r < s1

P (j : si r) ◦ ηsi where si is the largest s ∈ S such that s ≤ r.

Therefore, we can define a map ϕ : HomCS(K,PS) HomCR(K,P ) where

ϕ(η : K PS) = η′ : K P.
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Consider the map ψ : HomCR(K,P ) HomCS(K,PS) where

ψ(σ : K P ) = σ′ : K PS

where we set σ′s = σs. While this map is particularly boring, we’re discussing it because we can
now see that ψ and ϕ are inverses of each other. Therefore, we see that we have a bijection
between the hom-sets, as desired.

Naturality.
Finally, we must demonstrate naturality. So suppose we have a natural transformation α :
K K ′ between two persistence modules K,K ′ : S C. Consider the squares below, which
we do not yet know commutes.

HomCS(K,PS) HomCR(K,P )

HomCS(K ′, PS) HomCR(K ′, P )

ϕ

ϕ

η : K PS η′ : K P

η ◦ α : K ′ PS

η′ ◦ α : K ′ P

=
(η◦α)′ : K ′ P

Note that on one hand,

αr =




1I if r < s1, where I is initial
αsr where sr is the largest sr ∈ S such that sr ≤ r.

and

η′r =



iP (r) : I P (r) if r < s1

P (j : si r) ◦ ηsi where si is the largest s ∈ S such that s ≤ r.

so that

(η′ ◦ α)r =



iP (r) : I P (r) if r < s1(
P (j : si r) ◦ η

)
◦ α where sr is the largest sr ∈ S such that sr ≤ r.

=



iP (r) : I P (r) if r < s1

P (j : si r) ◦ (η ◦ α) where sr is the largest sr ∈ S such that sr ≤ r.

= (η ◦ α)′r.

Since we know that
(
P (j : si r) ◦ η

)
◦ α = P (j : si r) ◦ (η ◦ α). Thus we see that the

previous squares we discussed do in fact commute.
Now suppose we have a natural transformation σ : P P ′ between two functors P, P ′ :

R C. Consider the diagrams below, which we will show are commutative.
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HomCS(K,PS) HomCR(K,P )

HomCS(K,P ′S) HomCR(K,P ′)

ϕ

ϕ

η : K PS η′ : K P

σ′ ◦ η : K P ′S

σ ◦ η′ : K P ′

=
(σ′ ◦η)′ : K P ′

To show this, observe that

σ ◦ η′ =



σr ◦ iP (r) : I P ′(r) if r < s1

σr ◦ P (j : si r) ◦ ηsi where si is the largest s ∈ S such that s ≤ r.

=



iP ′(r) : I P ′(r) if r < s1

P ′(j : si r) ◦ (σ ◦ η)si where si is the largest s ∈ S such that s ≤ r.

=



iP ′(r) : I P ′(r) if r < s1

P ′(j : si r) ◦ (σ′ ◦ η)si where si is the largest s ∈ S such that s ≤ r.

= (σ′ ◦ η)′.

The diagrams below can assist to seeing why this is the case. First, the change in purple occurs
by commutativity of the diagram on the left; the commutativity results due to the universal
nature of morphisms originating from the initial object I. Second, the changes in green and
red occur by commutativity of the diagram on the right.

P (r) P ′(r)

I

σr

iP (r) iP ′(r)

P ′(si) P ′(r)

P (si) P ′(r)

K(si) K(r)

P ′(j)

σsi=σ
′
si

P (j)

σr

ηsi η′r

Thus we see that our original squares are commutative. At this point, we can conclude that we
do in fact have an adjunction

CR CSR

E

as desired.
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11.2 Generalized Persistence Modules.

Definition 11.2.1. Let P be a preorder. Then a generalized persistence module is a
functor F : P D.

Therefore, we may view DP to be the category of generalized persistence modules on P .
Definition 11.2.2. A translation on P is a functor Γ : P P such that x ≤ Γ(x) for all x.
Equivalently, it is any functor such that there exists a natural transformation ηΓ : I Γ.

We can denote the category of translations on P as TransP . Note that this is a preorder.
Since P is a preorder, any two natural transformations between two functors must necessarily
be equal. Moreover, every pair of translations must have a natural transformation; that is, one
(or both) of the diagrams below must commute for any x ≤ y in P .

Γ(x) Γ(y)

K(x) K(y)

K(x) K(y)

Γ(x) Γ(y)

.

Thus we set Γ ≤ K whenever there exists a natural transformation ηΓK : Γ K.
Definition 11.2.3. Let P be a preorder and Γ, K ∈ TransP . Suppose F,G ∈ DP . We say
F,G are (Γ, K)-interleaved if there exists a pair of natural transformations ϕ : F G ◦Γ and
ψ : G F ◦K such that

F (x) F (y)

G(Γ(x)) G(Γ(y))

ϕx ϕy

G(x) G(y)

F (K(x)) F (K(y))

ψx ψy

F (x) F (K(Γ(x)))

G(Γ(x))

F (ηK(Γ(x)))

ϕx ψΓ(x)

G(x) G(Γ(K(x)))

F (K(x))

G(ηΓ(K(x)))

ψx ϕK(x)

Note that, given the first two commutative squares, we can stack them to create a larger
commutative square:
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F (x) F (y)

G(Γ(x)) G(Γ(y))

F (K(Γ(x))) F (K(Γ(y)))

ϕx

F (ηK(γ(x)))

ϕy

F (ηK(γ(y)))
ψΓ(x) ψΓ(y)

G(x) G(y)

F (K(x)) F (K(y))

G(Γ(K(x))) G(Γ(K(y)))

ψx
G(ηΓ(K(x)))

ψy
G(ηΓ(K(y)))

ϕK(x) ϕK(y)

If the two triangular diagrams did not hold, then we would we would see that there would be two
different, but not necessarily equal ways of getting from F to F (K(Γ)) and G to G(Γ(K(x))).
Note also that, if we really wanted to, we could keep stacking these diagrams on and on.

The interleaving of two functors satisfies the following three properties.
Proposition 11.2.4 (Functoriality). Let Γ, K be translations on a preordered set P . If F,G ∈
DP , and if F,G are (Γ, K)-interleaved, then H ◦ F and H ◦G are also (Γ, K) interleaved.

Proof. This is true since any functor applied to a commutative diagram will output a com-
mutative diagram. Thus if we compose H with the commutative diagrams which arise from
the interleaving of F,G, we get

H ◦ F (x) H ◦ F (y)

H ◦G(Γ(x)) H ◦G(Γ(y))

H(ϕx) H(ϕy)

H ◦G(x) H ◦G(y)

H ◦ F (K(x)) H ◦ F (K(y))

H(ψx) H(ψy)

H ◦ F (x) H ◦ F (K(Γ(x)))

H ◦G(Γ(x))

H(F (ηK(Γ(x))))

H(ϕx) H(ψΓ(x))

H ◦G(x) H ◦G(Γ(K(x)))

H ◦ F (K(x))

H(G(ηΓ(K(x))))

H(ψx) H(ϕK(x))

The above diagrams can be reconciled with the definition of an (Γ, K) interleaving, so that
H ◦ F,H ◦G are (Γ, K) are interleaved. �
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Proposition 11.2.5 (Monotonicity). Let Γ1,Γ2, K1, K2 be translations of a preordered set P
such that Γ1 ≤ Γ2 and K1 ≤ K2. If two persistence modules F,G ∈ DP are (Γ1, K1) interleaved,
then they are also (Γ2, K2) interleaved.

Proof. Since Γ1 ≤ Γ2 and K1 ≤ K2, there must exist natural transformations α : Γ1 Γ2

and β : K1 K2. Now since F,G are (Γ1, K1)-interleaved, this means we get the usual
diagrams, but we can stack an extra layer on the bottom.

F (x) F (y)

G(Γ1(x)) G(Γ1(y))

G(Γ2(x)) G(Γ2(y))

ϕx ϕy

G(αx) G(αy)

G(x) G(y)

F (K1(x)) F (K1(y))

F (K2(x)) F (K2(y))

ψx ψy

F (βx) F (βy)

Hence we can see our natural transformations of interest are G(α) ◦ ϕ : F G ◦ Γ2 and
F (β) ◦ ψ : G F ◦ K2. We now have to show that our two required triangular diagrams
must commute. Towards this goal, consider the diagram below.

F (x) F (K1(Γ1(x))) F (K2(Γ1(x))) F (K2(Γ2(x)))

G(Γ1(x)) G(Γ2(x))

F (ηK1(Γ1(x)))

ϕx

F (βΓ1(x)) F (K2(αx))

ψΓ(x)

G(αx)

F (βx)◦ψx

The left triangle commutes since F,G are a (Γ1, K1) interleaving, while the rightmost com-
mutes by the original square diagrams. We’ve outlined their correspondence in colors. We
almost have what we want, but we need to make sure F (K2(αx)) ◦F (βΓ1(x)) ◦F (ηΓ1(K1(x))) =
F (ηΓ2(K2(x))). To do this, observe that the diagram

x K2(Γ2(x))

K1(Γ1(x)) K2(Γ1(x))

ηK2Γ2

ηK1Γ1

βΓ1(x)

K2(αx)

must necessarily commute as it is a diagram inside of P , a preordered set. Therefore, the
image of this diagram under F must produce a commutative diagram, so that we do in fact
get our desired relation. All together, we then have
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F (x) F (K2(Γ1(x)))

G(Γ2(x))

F (ηK2Γ1 )

(G(α)◦ψ)x (F (β)◦ψ)x

The same procedure can be repeated dually to demonstrate commutativity for the other
required triangular diagram. Thus we have that F,G are (Γ2, K2)-interleaved. �

Proposition 11.2.6 (Triangle inequality.). Let Γ1,Γ2, K1, K2 be translations of a preordered
set P . Suppose F,G,H ∈ DP . Then if F,G are (Γ1, K1)-interleaved and G,H are (Γ2, K2)-
interleaved, then F,H are (Γ2 ◦ Γ1, K1 ◦K2)-interleaved.

Proof. First observe that since F,G are (Γ1, K1)-interleaved andG,H are (Γ2, K2)-interleaved,
we have the natural transformations

ϕ : F G ◦ Γ1 ϕ′ : G H ◦ Γ2

ψ : G F ◦K1 ψ′ : H G ◦K2

which satisfy the required diagrams. Consider the diagrams
F (x) F (y)

G(Γ1(x)) G(Γ1(y))

H(Γ2(Γ1(x))) H(Γ2(Γ1(y)))

ϕx ϕy

ϕ′Γ1(x) ϕ′Γ1(y)

H(x) H(y)

G(K2(x)) G(K2(y))

F (K1(K2(x))) F (K1(K2(y)))

ψ′x ψ′y

ψK2(x) ϕ′
K2(y)

which commute by our given interleavings. Then there are natural transformations ψ′Γ1 ◦ ϕ :
F H(Γ2◦Γ1) and ϕ′K2 ◦ψ : H F (K1◦K2). We now must check they satisfy the required
triangular diagrams. We can demonstrate this for at least one; Consider the diagram

F (x) F (K1(Γ1(x))) F (K1(K2(Γ2(Γ1(x)))))

G(Γ1(x)) G(K2(Γ2(Γ1(x))))

H(Γ2(Γ1(x)))

F (ηK1(Γ1(x)))

ϕx

F (K1(ηK2Γ2 )Γ1)

ψΓ1(x)

ϕ′Γ1(x)

G(ηK2Γ2 (Γ1(x)))

ψK2(Γ2(Γ1(x)))

ψ′Γ2(Γ1(x))

The above diagram commutes by our given interleavings. The diagram in blue commutes since
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F,G are (Γ1, K1) interleaved, while the diagram in red commutes since G,H are (Γ2, K2)-
interleaved.

�
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11.3 Interleaving Distances via Sublinear Projections and
Superlinear Families

Definition 11.3.1. A sublinear projection is a function ω : TransP [0,∞] which acts
on the objects of TransP in such a way that ωI = 0 and ωΓ1Γ2 ≤ ωΓ1 + ωΓ2.

Moreover, we say a sublinear projection is monotone if whenever Γ ≤ K we have that
ωΓ ≤ ωK .

Note that we can turn a sublinear projection ω into a monotone one by defining

ωΓ = inf{ωΓ′ | Γ′ ≥ Γ}.

This is monotone since, if Γ ≤ K is a pair of translations, then one can observe that

{ωΓ′ | Γ′ ≥ Γ} ⊃ {ωΓ′ | Γ′ ≥ K} =⇒ ωΓ ≤ ωK .

Also note another nice property: for every sublinear projection ω, it is always the case that
ωΓ ≤ ωΓ for any translation Γ.
Definition 11.3.2. Suppose F,G are interleaved by a pair of translations (Γ, K). Then we say
F,G are ε-interleaved with respect to ω if

ωΓ, ωK ≤ ε.

Now we prove a small lemma.
Lemma 11.3.3. Let ω be a sublinear projection on a preorder P , and let Γ be a translation
of P . Then for every η > 0, there exists a translation Γ′ ≥ Γ such that

ωΓ′ ≤ ωΓ + η.

Proof. Suppose the statement was false. Then this would imply the existence of some η > 0
with the property that

ωΓ + η < ωΓ′

for all Γ′ ≥ Γ. Hence we would see that

ωΓ 6= inf{ωΓ′ | Γ′ ≥ Γ}

which is a contradiction. �

With the definition of a sublinear projection, we can now create a (psuedo)metric between
persistence modules.
Definition 11.3.4. Let F,G ∈ DP , and suppose ω is a sublinear projection. Then their
interleaving distance is given by
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dω(F,G) = {ε ∈ [0,∞) | F,G are ε-interleaved w.r.t. ω}
= {ε ∈ [0,∞) | F,G are (Γ, K)-interleaved and ωΓ, ωK ≤ ε}.

Proposition 11.3.5. Let ω be a sublinear projection. Then dω = dω.

Proof. We will prove this by first showing that dω ≥ dω, and then demonstrating that
dω − dω = 0.
dω ≥ dω If a pair of persistence modules F,G are ε-interleaved by (Γ, K) with respect to ω,

then we can observe that

ωΓ ≤ ωΓ ≤ ε ωK ≤ ωK ≤ ε

so that F,G are also ε-interleaved by (Γ, K) with respect to ω. Therefore,

{ε ∈ [0,∞) | F,G are ε-interleaved w.r.t. ω} ⊆ {ε ∈ [0,∞) | F,G are ε-interleaved w.r.t. ω}.

If we take the infimum of the above relation, we get that dω ≤ dω.

dω − dω = 0. Let δ > 0. We’ll show that for any persistence modules F,G that

dω(F,G)− dω(F,G) ≤ δ

which, in combination of the fact that dω ≤ dω, will then give us our result.
Towards this goal, let Γ, K be an interleaving of F,G such that

ωΓ, ωK ≤ dω(F,G) + δ.

Such an interleaving must exist or else dω(F,G) is larger than we thought. By the
lemma we proved earlier, we know that there exist translations Γ′, K ′ such that

Γ ≤ Γ′ K ≤ K ′

and

ωΓ′ ≤ ωΓ ≤ dω(F,G) + δ ωK′ ≤ ωK ≤ dω(F,G) + δ.

Note that by Monotonocity of interleavings, since F,G are interleaved by (Γ, K), we
know that F,G are interleaved by (Γ′, K ′). Therefore, we can conclude that since
ωΓ′ , ωK′ ≤ dω + δ, we see that

dω(F,G) ≤ dω(F,G) + δ =⇒ dω(F,G)− dω(F,G) ≤ δ.
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Since δ > 0 was arbitrary, and because dω ≥ dω we have that they must be equal, as
desired.

�

We now introduce an important implication of these results.

Theorem 11.3.6. For any sublinear translation ω : TransP [0,∞], The interleaving
distance d = dω becomes an extended psuedometric on DP .

Proof. To show this, we must show that d(F, F ) = 0 for any persistence module F , d is
symmetric, and that d obeys the triangle inequality.
d(F,F ) = 0 Observe that d(F, F ) = 0. This is because if we denote I : P P to be the

identity translation on P , then F is (I, I) interleaved with itself. But recall that ωI = 0.
d(F,G) = d(G,F ) Now observe that d(F,G) = d(G,F ). This is because of the inherent

symmetry present in the definition of an interleaving, which allows us to swap F and
G.

Triangle Inequality Finally, we show that d obeys the triangle inequality. Consider a
triple of persistence modules F,G,H. Suppose F,G are ε interleaved, while G,H are ε′
interleaved. Regardless of whether or not ε ≤ ε′ or vice versa, we know that there exist
translations ε-translations (Γ, K) which interleaved F,G and ε′-translations (Γ′, K ′)
which interleave G,H. By the triangle inequality of translations, we know that this
implies that F,H are (Γ′ ◦ Γ, K ◦K ′)-interleaved
Note that by sublinearity we have that

ωΓ′Γ ≤ ωΓ′ + ωΓ ≤ ε′ + ε

ωKK′ ≤ ωK + ωK′ ≤ ε+ ε′

Therefore, we see that
d(F,H) ≤ ε′ + ε.

Taking the infimum over ε′, ε, we get that

d(F,H) ≤ d(F,G) + d(G,H)

as desired.
�

We’ll now show that this isn’t the only way to invent a metric for persistence modules in
their functor category.
Definition 11.3.7. Let P be a preorder. A superlinear family Ω : [0,∞) TransP is a
function where

ε 7! Ωε ∈ TransP
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such that Ωε1Ωε2 ≤ Ωε1+ε2 .

Note that in TransP , the identity I : P P is an initial object. So if ε1 ≤ ε2, we know
that

I ≤ Ωε2−ε1 .

Appending Ωε1 on the right, we get that

IΩε1 ≤ Ωε2−ε1 .

Using the fact that Ωε1Ωε2 ≤ Ωε1+ε2 , we see that

IΩε1 ≤ Ωε2−ε1 ≤ Ωε2 .

Since I is the identity, we know that IΩε1 = Ω1. We thus have that

Ωε1 ≤ Ωε2

so that superlinear families are monotonic.
Now, how does this turn into a metric?

Definition 11.3.8. Let P be a preorder and D a category. Then for F,G ∈ DP , we define
their interleaving distance

dΩ(F,G) = inf{ε ∈ [0,∞) | F,G are Ωε-interleaved}.

If the above set is empty, we set dΩ(F,G) =∞.

Theorem 11.3.9. The interleaving distance dΩ is an extended pseudometric.

Proof. To show this, we need to prove that for persistence modules F,G, d(F, F ) = 0,
d(F,G) = d(G,F ) = 0, and that the metric satisfies the triangle inequality.
d(F,F ) = 0. Observe that the functors F, F are (I, I)-interleaved. Given that I ≤ Ω0 since

it is initial, we see that d(F, F ) = 0.
d(F,G) = d(G,F ). Observe that the definition is purely symmetric so that this result is

instant.
Triangle inequality. Let F,G,H be persistence modules and suppose F,G are Ωε1-

interleaved while G,H are Ωε2-interleaved. Then by the triangle property of trans-
lations, we know that F,H are (Ωε2Ωε1 ,Ωε1Ωε2)-interleaved.
Observe that

Ωε2Ωε1 ≤ Ωε1+ε2

Ωε1Ωε2 ≤ Ωε1+ε2 .
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By monotonicty of translations, this implies that F,H are Ωε1+ε2-interleaved, so that

dΩ(F,H) ≤ ε1 + ε2.

Taking the infimum over ε1, ε2, we get that

dΩ(F,H) ≤ dΩ(F,G) + dΩ(G,H)

as desired.
�
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11.4 General Persistence Diagrams

Persistence diagrams (and barcodes) give a visual representation of how a filtration of a topo-
logical space (usually a simplicial complex) evolves. It keeps track of homological dimensions
which are "born" and "killed" throughout this evolution.

Let X be a topological space. We know from algebraic topology that there exists a n-th
singular homology group

Hn(X).

Suppose that f : X R is a real-valued function. An example of this is the height function
of a sphere centered at the origin. Now one thing we can do with these types of functions is
take any a ∈ R and consider

f−1((∞, a]) ⊆ X.

The space f−1((∞, a]) ⊆ X is a topological space induced by the subspace topology of X. In
general, this process can be modeled functorially. Let R be a category with morphisms given
by poset structure. Then

E : R Top
a 7−! f−1((∞, a])

since if a ≤ b then this induces a continuous function

i : f−1((∞, a]) f−1((∞, b])

namely, the inclusion function. We denote the functor as E for "evolution," as this functor
filters the space X. As we send a to infinity, we ultimately obtain the entire topological space.

Switching focus, consider the homology group of this subspace

Hn(f−1((∞, a])).

We can also outline this behavior as functorial where we send

H : Top Ab
f−1((∞, a]) 7−! H(f−1((∞, a]))

since for any a ≤ b, we have a group homomorphism which we denote as ϕba:

ϕba : H(f−1(∞, a]) H(f−1(∞, b]).
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Now we can outline this overall data pipeline as a functor H ◦ E : R Ab

H ◦ E : R Top Ab
a 7−! f−1((∞, a]) 7−! H(f−1((∞, a])).

What’s really happening here? First, E records the evolution of the topological space under
f : X R. Then H records the homology groups; overall, H ◦ E records the topological
evolution! We are thus interested in the following objects.
Definition 11.4.1. Let a ≤ b. Recall that

H ◦ E(a ≤ b) = ϕba.

Since we are interested in the image of these mappings, which will be a group, we denote

F ([a, b]) = Im(ϕba) = Im
(
H(f−1((∞, a])) H(f−1((∞, b]))

)

to be a persistence homology group from a to b.

Definition 11.4.2. For a persistence homology group F ([a, b]), define the Betti number from
a to b as

βba = rank(F ([a, b])).

In most nice topological spaces, the homology doesn’t change much through its evolution.
That is, as we move from a to b, the persistence homology groups F b

a don’t change much.
For example, if f : X R is the height function and X is a sphere, the topology will not

change until we get from one pole to the other.

0

a

1

f−1((−∞, a])

What does it mean for the topology to change in this context? It means that we were at
some value a, but then at a+ ε the homology became different. This means that

H(f−1((∞, a])) H(f−1)(∞, a+ ε]

is not an isomorphism. Finding out when the homology does change is valuable information,
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so we keep track of these points.
Definition 11.4.3. A critical value of f : X R is an a ∈ R such that there exists an ε > 0
such that

Hn(f−1((∞, a− ε])) Hn(f−1((∞, a+ ε]))

is not an isomorphism. The function f is called tame if f has finitely many critical values.

Let f : X R be a tame function. Then we have finitely many critical values {s1, s2, . . . , sn}.
Let {t0, t1, . . . , tn} be any interleaved sequence of numbers such that ti−1 < si < ti. We will see
soon why such a choice has much freedom in it. Now append to this sequence t−1 = s0 = −∞
an tn+1 = sn+1 =∞.

We are now ready to define persistence diagrams.

Definition 11.4.4. Let f : X R be tame and (si, sj) be a tuple of critical values. Then we
define the multiplicity of (si, sj) to be

µji = βtiti−1
− βbjbi + β

bj−1
bi
− βbjbi

Definition 11.4.5. The persistence diagram of the tame function f : X R D(f) is the
multiset of tuples (si, sj) each with multiplicity µji . Alternatively,

D(f) =
n+1⋃

i=0

n+1⋃

j=0




µji⋃

k=1
{(si, sj)}




x

y

s1 s2 s3
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Persistence diagrams consist of points in R× R ∪ {∞} above the diagonal y = x. Thus let
Dgm be the category of half open intervals [p, q) with p < q and intervals of the form [p,∞).

In what follows, let S = {s1, s2, . . . , sn} be a finite set of real numbers, and let (G,+) be an
abelian group with identity e.
Definition 11.4.6. A map X : Dgm G is S-constructible if for every I ⊆ J where

J ∩ S = I ∩ S

we have X(I) = X(J).

The motivation for defining this type of function arises from the rank function

βba : Dgm Z
= rank(F ([a, b]))

= rank(Im
(
H(f−1((∞, a])) H(f−1((∞, b]))

)
)

Suppose that our critical points are S = {s0, s1, s2, s3} and that we have two intervals
I = [a, b] and J = [c, d] such that I ⊆ J and I ∩ S = J ∩ S.

s0 s1 s2 s3a c b d

Clearly in this case we have that I ∩ S = J ∩ S. Now observe that

βba = βdc

since these intervals observe the same changes in rank.
Therefore, we see that the rank function for a tame function f : R X is S-constructible.

Definition 11.4.7. A map Y : Dgm G is S-finite if

Y (I) 6= e =⇒ I = [si, sj) or I = [si,∞)

Alternatively, this states that

I 6= [si, sj) and I 6= [si,∞) =⇒ Y (I) = e.

which is probably a better way of thinking about this.

This leads to the following definition:
Definition 11.4.8. A persistence diagram is a finite map Y : Dgm G.

The motivation for this is due to the persistence diagram. Given a persistence diagram, we
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can extend it to a mapping

X : Dgm Z
[a, b) 7! βb1a1 − βb2a2 + βb1a2 − βb1a1

where a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2 are values within some sufficiently small neighborhood of a
and b. Note that in this extension, if [a, b) 6= [si, sj) or [si,∞) in, then each βbjai is of full rank,
so that

X([a, b)) = 0.

Hence we see that the persistence diagram is S-finite where S is the finite set of critical values.
We now want to invent a distance between persistence diagrams. To do so, we must first

denote G as not only an abelian group, but one with a translational invariant partial ordering
≤. What we mean by that is if a ≤ b then a+ c ≤ b+ c for any a, b, c ∈ G.

Definition 11.4.9. Consider Y1, Y2 : Dgm G be a pair of persistence diagrams. We say
there exists a morphism ϕ : Y1 Y2 if

∑

J∈Dgm
I⊆J

Y1(J) ≤
∑

J∈Dgm
I⊆J

Y2(J)

for all I ∈ Dgm.

Note the above sums are finite.
Observe that if ϕ : Y1 Y2 and ϕ′ : Y2 Y3, then we can define the unique morphism

ϕ′◦ϕ : Y1 Y3. Therefore, this morphism relation establishes a reflexive, transitive ordering on
our persistence diagrams. Thus we can consider the category of persistence diagrams PDiag(G)
into the group G where the objects are persistence diagrams Y : Dgm G and morphisms
as described above. As we stated before, these morphisms make this category into a partial
ordering.

Define the mapping

Growε : Dgm Dgm
[p, q) 7! [p− ε, q + ε] and [p,∞) 7! [p− ε,∞).

Now consider a pair of persistence modules Y1, Y2 : Dgm G. Since they are persistence
modules, we know by definition that they are S1 and S2-finite for some finite sets S1, S2. With
that said, observe that Y1 ◦Growε, Y2 ◦Growε : Dgm G are again persistence modules
since they S ′1 and S ′2 finite, where. . .

Therefore, we have an endofunctor on our category of persistence modules.

∇ε : PDgm(G) PDgm(G)
Y1 : Dgm G 7! Y1 ◦Growε : Dgm G.
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Note that for any persistence modules Y : Dgm G, we have that ∇ε(Y ) Y since for any
interval Y , ∑

J∈Dgm
I⊆J

Y (J) = Y1 ◦Growε
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